wN SCIENCES
SORBONNE
UNIVERSITE

Critically-Damped Langevin Score-based

Generative Models:
introduction, motivation and convergence.
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Generative modeling framework.

> D= {x}"; € (RY)" a collection of i.i.d. samples from an
unknown distribution mgsta

» Goal: generate new samples from 7q,¢, (i.e. find a proba
Too and a simulable kernel Q such that mgata ™~ T Q).

Complex data distribution myata Easy-to-sample distribution m.,
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SGMs Philosophy.

» “Creating noise from data is easy; creating data from noise is
generative modeling.” (Song et al., 2021)

Complex data distribution myata Easy-to-sample distribution ..

Backward phase

Forward phase
e

» EEEEEEEEER
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From data to noise: the forward process.

> <7 ) 0T is solution to an Ornstein—Uhlenbeck process:
te(o,

N —
dX; = —Yth— V2dB;, Xo ~ Tdata -

» If unfamiliar with SDEs: limit of a discrete-time process given
by

Xk+h:\/1_2th+V2th7 Zy NN(O,/C/), h—0.

» Intuition: destroys signal via Gaussian noise and rescaling.
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SGMs through SDE: more on the forward process.

» The noising procedure implies a scaling down of the data
points d X; = — X (dt,
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SGMs through SDE: more on the forward process.

» ... and a Gaussian noising process d?t = \/2dB;,
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SGMs through SDE: more on the forward process.
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From noise to data: the backward process.

» This forward process admits a time-reversed process (Anderson,

1982; Cattiaux et al., 2021), i.€.

(yt) t€[0,T] = <)—<>T_t>t6[0,T]

with,

aX.= [ X.+2VIogpr_: (Yt) dt +v2dB,, Xo~ pr.
—_————

score function

with p; the p.d.f. of X,.

» The score term drives the backward process towards regions of high
probability.

» This is (almost) a generative model: yr ~ Tdata-

8/35



Table of Contents

1. Introduction to SGMs

1.2 SGMs in practice.

8/35



SGMs in Practice |: mixing time.
> Let Q; be the semigroup of yt:
Qi(x,dy) =P (Yr e dy|Xo = x) .
» Time-reversal holds when YO ~ PT, i.€.
Tdata = PTQT -

> But p; depends on myata:

pt(Xt) :/ pt(Xt|X0) 7rdata(dXO)-
Rd N——
p.d.f. of X¢|Xo

» | practice, one wants an independent and easy-to-sample
probability mo, to initialize the generative model.
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SGMs in Practice |: mixing time.

> Q leverage the ergodicity of the O-U kernel.

» Forward process admits time marginal with Z ~ N/(0, /) and
Z L Xoi

%
)_(>t =e 'Xo+V1-e2tZ
> For T large, the initial conditions are forgotten:
PT = To NN(O,/C/) .

A  Mixing Time Error: Tga, ~ Too QT
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SGMs in practice Il: learn the score function.

» The backward process depends on the score function
V log pt(x).
» The forward process marginals can be sampled exactly.

» Train a deep neural network s : [0, T] x RY — R to
minimize:
]

Enaive(a) = E |:H59 <7-7 77’) - V |Og pT (77‘)
with 7 ~ U(0, T) independent of the forward process ()_gt)tzo-

» But p-(x) is unknown !
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SGMs in practice Il: learn the score function.

» Q its conditional version shares the same optimum (Hyvarinen

and Dayan, 2005; Vincent, 2011):

Lucone (6) = E [1s0 (. X)) = Vlog o, (X+1Xo) IF] -

» The conditional score is explicit:

%
V|ng7—()_<>7|70) = M = _£

02 or

with m; = e~ and 0, = /1 — m2.

» Score matching Neural Networks writes as,

2

Sp (7‘, 77> + £

or

ﬁscore (9) =E l

| E—

A Approximation error: T, & TFOOQ—OI—
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SGMs in practice Ill: simulate from the backward kernel.

» The backward drift is non-linear: non-Gaussian.
» Q discretize [0, T] in N steps with t, = kh, h= T/N.

» Euler—-Maruyama discretization:
xtkﬂ = th + h<)_<t/< + 259(T - tk7)_(tk)) + \/ﬂZk

» Other approaches preserving the time marginals exist (e.g. ODE
sampling).

A Discretization error: Ta = 700 Q% 5 i= 70
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Draw inspiration from MCMC.

» In sampling, one wants to sample from 7 oc e~ Y.

» When U : RY — R is smooth and typically strongly convex,
dX, = —VU(X;)dt + V2dB,

admits 7 as invariant measure.
» Sampling can be done by discretization (ULA) or accept-reject
corrections (MALA).

P This can be extended to a kinetic setting:

‘ @) - ( (Ve +VVU(Xt>)) de V2 < ) 15

v 2
» Stationary distribution 7(dx,dv) e U)- b dxdv.
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Extending the Phase Space of SGMs.

¥ Augment data space with a velocity component (V;):c[o, 7]-
@ X: and V; are coupled through Hamiltonian-like interactions.
@ Noise injection only on the velocity component.

Forward process: for U: = (Yt, Vt)T € R? and B; € R?,

d (\/t> = (1 2> (Vt> dt+ <0 0_) dBta (X07 VO) Tdata@ Ty

where 7, ~ N(0,v?). We use compact matrix notation,

AU, = AUt + TdB,, Ug ~ mgura © .
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Noising process comparison.

Critically-Damped Langevin forward process

Ornstein-Uhlenbeck forward process

OU process

CLD process (position &
velocity)
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What makes a forward SDE a generative model?

» A well-chosen noising process must satisfy three properties:
1. Interpolation: transforms the data distribution 7qats into an
easy-to-sample prior .
2. Learnability: time-dependent score functions V log p;(+) can be
learned.
3. Efficient sampling: marginals can be efficiently simulated.

» Examples: Variance-Preserving (VP), Variance-Exploding (VE), flow
matching and Critically-Damped Langevin (CLD) diffusions.
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1. Interpolate between the data distribution and a prior.

> The forward_)process evolves in the extended phase space
ﬁt = (Yt, Vt)T € R2 as

t
U, =e"U, +/ e(t=9)AT 4B, . (1)

0

and converges to moo ~ N (02, L ).

> Time reversal property applies on the extended space, i.e.

_>
( ty te[o T — yT taVT t teOT]

» leading to the backward SDE:
AU, = —AUdt + 2V log pr_, (ﬁt) dt + ¥dB;,
with p¢(x, v) de p.d.f of (1).
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2. Score function can be learned

» As before sy trained to learn ¢ o_>d|t|ona| score but on the whole
phase-space state = (X, Vi)

Losu(f) = E[Hse(t,ﬁi) ~ Viogp(Ue | Uo)|[*] -

%
» However, we_k)now that Vg ~ /\/(O, v2), so we can marginalize
0= (70, V)T over Vp, leading to a closed-form
expression of Vlogp:(U;: | Xo):

Lusu(0) = E[[so(t, Us) = Viog pe(U+ | Xo)|[] -

yielding more stable training objective.
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3. Marginals can be sampled.

Different numerical schemes:

» Euler—Maruyama (standard baseline);

» Symplectic integrators design for position-velocity state-spaces.
Combining all this leads to better numerical performance (Dock-

horn et al., 2022):

Table 1: Unconditional CIFAR-10 generative performance.

Class  Model NLL,  FID|

Score  CLD-SGM (Prob. Flow) (ours) <331 225
CLD-SGM (SDE) (ours) - 223
DDPM++, VPSDE (Prob. Flow) (Song et al., 2021c) ~ 3.13 3.08
DDPM++, VPSDE (SDE) (Song et al., 2021c) - 241
DDPM++, sub-VP (Prob. Flow) (Song et al., 2021c) ~ 2.99 2.92
DDPM++, sub-VP (SDE) (Song et al., 2021¢) - 241
NCSN++, VESDE (SDE) (Song et al., 2021¢) - 220
LSGM (Vahdat et al., 2021) <343 2.10
LSGM-100M (Vahdat et al., 2021) <296 4.60
DDPM (Ho et al., 2020) <375 3.17
NCSN (Song & Ermon, 2019) - 253

Score Adversarial DSM (Jolicoeur-Martineau et al., 2021b) - 6.10
Likelihood SDE (Song et al., 2021b) 2.84 2.87
DDIM (100 steps) (Song et al., 2021a) - 4.16
FastDDPM (100 steps) (Kong & Ping, 2021) - 2.86
Improved DDPM (Nichol & Dhariwal, 2021) 337 2.90
VDM (Kingma et al., 2021) <249  7.41(4.00)
UDM (Kim et al., 2021) 3.04 2.33
D3PM (Austin et al., 2021) <344 7.34
Gotta Go Fast (Jolicoeur-Martineau et al., 2021a) - 244
DDPM Distillation (Luhman & Luhman, 2021) - 9.36
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A variety of convergence results

» Assume score function is appropriately learned e.g.
[so(t,Ut) — Vlog pe(Us)l,, <M

where the expectation is taken under some appropriately
chosen stochastic process.

» Using this framework a variety of upper bounds to the
distance between the data distribution and the generated
distribution d (7gata, 7) have been established for various
metrics:

» For the total variation distance and Kullback-Leibler divergence:
De Bortoli et al. (2021); Conforti et al. (2023); Bortoli et al.
(2023); Chen et al. (2023); Chen (2023).

» For the Wasserstein distance: Lee et al. (2022, 2023); Bruno
et al. (2023); Gao et al. (2023).

21/35



Wasserstein—2: upper bounds.

» The W, distance is defined as

- 2] — -
2 ~0 H 0 0 ~0
W2 (T datar 72 _yy) = inf {IE D’?o - X»c,NH } L Ko~ Tanian X0y ~ 7rx7,\,}

» Control the errors already presented:

Wa(maatas B ) < WalL(X 1), £() + Wa(L(Xn), £(Ko )
Discretization Mixing time
+ WalL(Keo ), £(X 1))
Score approx.

S (‘,7TC1 + MC2 + \/EC3 s

with T > 0 the diffusion time, M the score approximation quality and h= T /N
the discretization step size.
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Backward contraction for O.U forward I.
» Proof relies mostly on contraction for Euclidean norm:

W3 (data, o H)_go - XL H
> Fix x,y € (R)*:
axr = (Yf +2V log pr—: (Y?)) dt+v2dB:, Xo=xp.s.
aXy = (Y{ +2Vlog pr_+ (7{)) dt+V24B., Xo=yps.

» Consider a synchronous coupling and introduce the difference
ODE Z, = X — X7, which satisfies

dz, = Zt+2(V|ong ¢ Y ¥)— Vg pr— t(yy))dt

=A

» and study
d
ZIIZ? = 227 (az:) = 2(|1Ze|* + 22, 8 ) -
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Backward contraction for O.U forward II.

> If pr_; is A-log-concave, then, there exists A > 0, such that

> (2, Viogpr«(X}) ~ Viegpr«(X1)) < -A|ZP
> V2logpr_: < —My.
» Therefore, using Gronwall inequality,

d
1207 <200 =231z

< 62(172)\)1‘”20“2'

» Takeaway: strong log-concavity (A > 1/2) gives contraction
for || - || which implies YW, contraction.
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Log-concavity is not enough for CLD

AU, = —AUdt + 2V log pr_; (ﬁt) dt + ¥dB,

» Consider a synchronous coupling and study the stability of the
difference ODE Z; = U¥ — U7, which satisfies

d
o (1Z¢)?) = —2Z] AZ, +22Z[ T?H, Z,.

0 0
(o )
where we used the mean value theorem with

HXX HXV
_ 72 _ t t
H, = V<logpr_+ = (Htx\/ Hg"’) .

with
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Log-concavity is not enough for CLD (counterexample).

Take p:(x, v) that is (1 — c)-log-concave with,

Ht:<cl _C1>, 0<c<1;, Spec(H:)=-1=xc,

Then with ¥ = diag(0,0) and Z = (Z, Z,),
2Z'Y°H,Z = 20%( — c Z,Z, - Z2).

Choose Z, > 0, Z, < 0 with ratio |Zy|/|Z,| > 1/c. Then the RHS
becomes positive.

Takeaway: even though p; is log-concave, the projected curvature
Y2H, is not negative semidefinite. Uniform contraction is hopeless.

26/35



Solution 1: Long-term regularity of the renormalized score

Idea. Introduce a renormalized formulation of the backward process:

AU, = AUt + 52V Iog pr_o(U)dt + ZdB:,  pri= ;i.
o0
Key properties.
1. Ais negative definite.
2. p: "quantifies” deviation from equilibrium p...

3. lts curvature V2 log p; characterizes the regularity of the
score.
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Structure & regularity assumptions on pgata

Finite relative Fisher information

Z(pdata | Poo) = /d HV|Og %(X)Hzpdata(x)dx < 0.
R

Log-Lipschitz perturbation of a strongly log-concave base
Paata(x) o exp (= [V/(x) + H(x)]) ,
with for all x, y € (R9)?:
» 3Ja > 0 such that aly < V2V(x) ;
> [H(x) — Hy)| < Lix—y]] -

One-sided Lipschitz score

T
_(Vlogpdata(x)_vlogpdata(y)) (X—)/) < LOHX_y||27 VX,yERd.
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Regularity of the renormalized score

» Under the previous hypotheses, there exists a constant C > 0
such that, for all t € (0, T],

[V2log ()| < € (1+ %)™ = L

P> Interpretation.
> Short times (t—0): the singularity in 1/1/t remains
integrable.
> Long times (t—o0): exponential decay.

> Takeaway: The renormalized score function regularizes over
time.
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Solution 1: Long-term regularity of the renormalized score

» Informally, there exists 9t PSD matrix and 7 > 0 such that
d
S 1Zdl3y < 227 MAZ, +22] M2 (Viogpr— (U;) ~ Vlog pr_s (U{))
< 2(=n+02L) |1Zelf3y
Using Gronwall’s lemma, there exists C > 0, such that,

_ 2 rtj 2
1Z¢ 15 < 727 Jo bsds 1215,

< Ce™™||Zollgy

A Contraction!
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Final YW, upper bound

» From contraction in the extended phase space, the three
sources of errors (mixing, approximation, and discretization)
can be controlled jointly:

W2(7Tdata®77w L(D?F)> <
C1 eicZTWZ(ﬂdata‘@ﬂVa 7‘_00) + ClUZM + Cl\/g'

» Projecting onto the position component X (Px(x,v) = x)
preserves the W, distance, since Px is 1-Lipschitz:

Wh (Wdata, £<)_<$)> < Ws (Wdata®7rv, E(Uqr)) .
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Solution 2: restore ellipticity

Idea. Inject a small amount of noise on all coordinates:
e 0
Y = ( ) , e > 0.
0 o

» Uniform ellipticity: (multi-dimensional O.U. structure).

Consequences.

> More quantitative bounds : standard log-concave tools apply.

» Practice: ¢ provides a new parameters to control the regularity
of the sample paths.
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Solution 2: Numerical aspects

Empirics (Funnel dataset, d = 100).
» Small ¢ often improves sliced-WW, vs. ¢ = 0 (CLD baseline).

> Trade-off: slight sensitivity to other hyperparameters.

% a=0.1 _e
a=0.25

-$- a=05

% a=1.0

0 J
10 \ 3 a=20

Mean Error

0.0 0.2 0.4 0.6 0.8 1.0

Mean W, over 5 runs; error bars represent £ one standard deviation.
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Funnel distribution scatter plot

Figure: 10 000 samples from a funnel distribution in dimension 50. Plot of
the 1st and 2nd dimension (left) and plot of the 1st, 2nd and 3rd
dimension (right).
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Solution 2: Numerical aspects

» Even with a small € > 0, structure-preserving integrators
can further improve performance.

» But: higher computational cost — the network must learn full
gradients V log p:(x, v) instead of velocity-only terms
V, log p:(v), doubling the effective dimension.

1 —#— Mean W2 (Euler)
Mean W2 (Leapfrog)

Mean Error

0.0 0.1 0.2 0.3 0.4 0.5

000
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