
Critically-Damped Langevin Score-based
Generative Models:

introduction, motivation and convergence.

Image taken from Dockhorn et al. (2022).
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Generative modeling framework.

▶ D = {xi}ni=1 ∈ (Rd)n a collection of i.i.d. samples from an
unknown distribution πdata

▶ Goal: generate new samples from πdata (i.e. find a proba
π∞ and a simulable kernel Q such that πdata ≃ π∞Q).
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SGMs Philosophy.

▶ “Creating noise from data is easy; creating data from noise is
generative modeling.” (Song et al., 2021)
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From data to noise: the forward process.

▶
(−→
X t

)
t∈[0,T ]

is solution to an Ornstein–Uhlenbeck process:

d
−→
X t = −

−→
X tdt +

√
2 dBt ,

−→
X 0 ∼ πdata .

▶ If unfamiliar with SDEs: limit of a discrete-time process given
by

Xk+h =
√
1− 2h Xk +

√
2h Zk , Zk ∼ N (0, Id), h→ 0 .

▶ Intuition: destroys signal via Gaussian noise and rescaling.
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SGMs through SDE: more on the forward process.

▶ The noising procedure implies a scaling down of the data

points d
−→
X t = −

−→
X tdt,
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SGMs through SDE: more on the forward process.

▶ ... and a Gaussian noising process d
−→
X t =

√
2dBt ,
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SGMs through SDE: more on the forward process.
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From noise to data: the backward process.

▶ This forward process admits a time-reversed process (Anderson,

1982; Cattiaux et al., 2021), i.e.(←−
X t

)
t∈[0,T ]

L
=
(−→
X T−t

)
t∈[0,T ]

with,

d
←−
X t =

←−X t + 2∇ log pT−t

(←−
X t

)
︸ ︷︷ ︸

score function

 dt +
√
2dBt ,

←−
X 0 ∼ pT .

with pt the p.d.f. of
−→
X t .

▶ The score term drives the backward process towards regions of high
probability.

▶ This is (almost) a generative model:
←−
X T ∼ πdata.
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SGMs in Practice I: mixing time.

▶ Let Qt be the semigroup of
←−
X t :

Qt(x ,dy) = P
(←−
X t ∈ dy |

←−
X 0 = x

)
.

▶ Time-reversal holds when
←−
X 0 ∼ pT, i.e.

πdata = pTQT .

▶ But pt depends on πdata:

pt(xt) =

∫
Rd

pt(xt |x0)︸ ︷︷ ︸
p.d.f. of

−→
X t |

−→
X 0

πdata(dx0) .

▶ I practice, one wants an independent and easy-to-sample
probability π∞ to initialize the generative model.
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SGMs in Practice I: mixing time.

▶ � leverage the ergodicity of the O–U kernel.

▶ Forward process admits time marginal with Z ∼ N (0, Id) and
Z ⊥ X0:

−→
X t = e−t−→X 0 +

√
1− e−2tZ

▶ For T large, the initial conditions are forgotten:

pT ≈ π∞ ∼ N (0, Id) .

� Mixing Time Error: πdata ≃ π∞QT
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SGMs in practice II: learn the score function.

▶ The backward process depends on the score function
∇ log pt(x).

▶ The forward process marginals can be sampled exactly.

▶ Train a deep neural network sθ : [0,T ]× Rd 7→ Rd to
minimize:

Lnaive(θ) = E
[∥∥∥sθ (τ,−→X τ

)
−∇ log pτ

(−→
X τ

)∥∥∥2] ,

with τ ∼ U(0,T ) independent of the forward process (
−→
X t)t≥0.

▶ But pτ (x) is unknown !
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SGMs in practice II: learn the score function.

▶ � its conditional version shares the same optimum (Hyvärinen
and Dayan, 2005; Vincent, 2011):

Lscore (θ) = E
[
∥sθ
(
τ,
−→
X τ

)
−∇ log pτ

(−→
X τ |
−→
X 0

)
∥2
]
.

▶ The conditional score is explicit:

∇ log pτ (
−→
X τ |
−→
X 0) =

mτ
−→
X 0 −

−→
X τ

στ2
= − Z

στ

with mτ = e−τ and στ =
√
1−m2

τ .

▶ Score matching Neural Networks writes as,

Lscore (θ) = E

[∥∥∥∥sθ (τ,−→X τ

)
+

Z

στ

∥∥∥∥2
]
.

� Approximation error: πdata ≈ π∞Qθ
T
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SGMs in practice III: simulate from the backward kernel.

▶ The backward drift is non-linear: non-Gaussian.

▶ � discretize [0,T ] in N steps with tk = kh, h = T/N.

▶ Euler–Maruyama discretization:

X̄tk+1
= X̄tk + h

(
X̄tk + 2 sθ(T − tk , X̄tk )

)
+
√
2h Zk

▶ Other approaches preserving the time marginals exist (e.g.ODE
sampling).

� Discretization error: πdata ≈ π∞Qθ
T ,N := π̂θ

∞,N
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Draw inspiration from MCMC.

▶ In sampling, one wants to sample from π ∝ e−U .
▶ When U : Rd → R is smooth and typically strongly convex,

dXt = −∇U(Xt)dt +
√
2dBt

admits π as invariant measure.
▶ Sampling can be done by discretization (ULA) or accept–reject

corrections (MALA).

▶ This can be extended to a kinetic setting:

d

(
Xt

Vt

)
=

(
Vt

−(Vt +∇U(Xt))

)
dt +

√
2

(
0
1

)
dBt

▶ Stationary distribution π(dx , dv) ∝ e−U(x)− ∥v∥2
2 dxdv .
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Extending the Phase Space of SGMs.

� Augment data space with a velocity component (Vt)t∈[0,T ].

� Xt and Vt are coupled through Hamiltonian-like interactions.

� Noise injection only on the velocity component.

Forward process: for
−→
U t = (

−→
X t ,
−→
V t)

⊤ ∈ R2 and Bt ∈ R2,

d

(
Xt

Vt

)
=

(
0 1
−1 −2

)(
Xt

Vt

)
dt+

(
0 0
0 σ

)
dBt , (X0,V0) ∼ πdata⊗πv ,

where πv ∼ N (0, v2). We use compact matrix notation,

d
−→
U t = A

−→
U tdt +ΣdBt ,

−→
U 0 ∼ πdata ⊗ πv .
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Noising process comparison.
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What makes a forward SDE a generative model?

▶ A well-chosen noising process must satisfy three properties:

1. Interpolation: transforms the data distribution πdata into an
easy-to-sample prior π∞.

2. Learnability: time-dependent score functions ∇ log pt(·) can be
learned.

3. Efficient sampling: marginals can be efficiently simulated.

▶ Examples: Variance-Preserving (VP), Variance-Exploding (VE), flow
matching and Critically-Damped Langevin (CLD) diffusions.
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1. Interpolate between the data distribution and a prior.

▶ The forward process evolves in the extended phase space−→
U t = (

−→
X t ,
−→
V t)

⊤ ∈ R2 as

−→
U t = etA

−→
U 0 +

∫ t

0
e(t−s)AΣdBs . (1)

and converges to π∞ ∼ N (02,Σ∞).

▶ Time reversal property applies on the extended space, i.e.

(
−→
X t ,
−→
V t)t∈[0,T ] = (

←−
X T−t ,

←−
V T−t)t∈[0,T ]

▶ leading to the backward SDE:

d
←−
U t = −A

←−
U tdt +Σ2∇ log pT−t

(←−
U t

)
dt +ΣdBt ,

with pt(x , v) de p.d.f of (1).
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2. Score function can be learned

▶ As before sθ trained to learn conditional score but on the whole
phase-space state

−→
U t = (

−→
X t ,
−→
V t):

LDSM(θ) = E
[∥∥sθ(t,−→U t)−∇ log pt(

−→
U t |

−→
U 0)

∥∥2] .
▶ However, we know that

−→
V 0 ∼ N (0, v2), so we can marginalize

−→
U 0 = (

−→
X 0,
−→
V 0)

⊤ over V0, leading to a closed-form

expression of ∇ log pt(
−→
U t |

−→
X 0):

LHSM(θ) = E
[∥∥sθ(t,−→U t)−∇ log pt(

−→
U t |

−→
X 0)

∥∥2] ,
yielding more stable training objective.
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3. Marginals can be sampled.

Different numerical schemes:

▶ Euler–Maruyama (standard baseline);
▶ Symplectic integrators design for position-velocity state-spaces.

Combining all this leads to better numerical performance (Dock-
horn et al., 2022):
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A variety of convergence results

▶ Assume score function is appropriately learned e.g.

∥sθ(t,Ut)−∇ log pt(Ut)∥L2 ≤ M

where the expectation is taken under some appropriately
chosen stochastic process.

▶ Using this framework a variety of upper bounds to the
distance between the data distribution and the generated
distribution d (πdata, π̂) have been established for various
metrics:
▶ For the total variation distance and Kullback-Leibler divergence:

De Bortoli et al. (2021); Conforti et al. (2023); Bortoli et al.
(2023); Chen et al. (2023); Chen (2023).

▶ For the Wasserstein distance: Lee et al. (2022, 2023); Bruno
et al. (2023); Gao et al. (2023).
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Wasserstein–2: upper bounds.

▶ The W2 distance is defined as

W2
2 (πdata, π̂

θ
∞,N) = inf

{
E
[∥∥∥−→X 0 − X̄ θ

∞,N

∥∥∥2] , −→X 0 ∼ πdata, X̄
θ
∞,N ∼ π̂θ

∞,N

}

▶ Control the errors already presented:

W2(πdata, π̂
θ
∞,N) ≤ W2(L(

←−
X T ),L(X̄N)︸ ︷︷ ︸

Discretization

+W2(L(X̄N),L(X̄∞,N)︸ ︷︷ ︸
Mixing time

+W2(L(X̄∞,N),L(X̄ θ
∞,N)))︸ ︷︷ ︸

Score approx.

≤ e−T c1 +Mc2 +
√
hc3 ,

with T > 0 the diffusion time, M the score approximation quality and h = T/N

the discretization step size.
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Backward contraction for O.U forward I.
▶ Proof relies mostly on contraction for Euclidean norm:

W2
2 (πdata, π̂

θ
∞,N) ≤

∥∥∥−→X 0 − X̄ θ
∞,N

∥∥∥2
L2

▶ Fix x , y ∈ (R)2:

d
←−
X x

t =
(←−
X x

t + 2∇ log pT−t

(←−
X x

t

))
dt +

√
2dBt ,

←−
X 0 = x p.s.

d
←−
X y

t =
(←−
X y

t + 2∇ log pT−t

(←−
X y

t

))
dt +

√
2dBt ,

←−
X 0 = y p.s.

▶ Consider a synchronous coupling and introduce the difference

ODE Zt =
←−
X x

t −
←−
X y

t , which satisfies

dZt = Zt + 2
(
∇ log pT−t(

←−
X x

t )−∇ log pT−t(
←−
X y

t )
)

︸ ︷︷ ︸
:=∆t

dt

▶ and study

d

dt
∥Zt∥2 = 2Z⊤

t (dZt) = 2
(
∥Zt∥2 + 2 ⟨Zt ,∆t⟩

)
.
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Backward contraction for O.U forward II.

▶ If pT−t is λ–log-concave, then, there exists λ > 0, such that

▶ ⟨Zt ,∇ log pT−t(
←−
X x

t )−∇ log pT−t(
←−
X y

t )⟩ ≤ −λ∥Zt∥2 ;
▶ ∇2 log pT−t ≼ −λId .

▶ Therefore, using Grönwall inequality,

d

dt
∥Zt∥2 ≤ 2(1− 2λ)∥Zt∥2

≤ e2(1−2λ)t∥Z0∥2.

▶ Takeaway: strong log-concavity (λ > 1/2) gives contraction
for ∥ · ∥ which implies W2 contraction.
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Log-concavity is not enough for CLD

d
←−
U t = −A

←−
U tdt +Σ2∇ log pT−t

(←−
U t

)
dt +ΣdBt ,

▶ Consider a synchronous coupling and study the stability of the

difference ODE Zt =
←−
U x

t −
←−
U y

t , which satisfies

d

dt

(
∥Zt∥2

)
= −2Z⊤

t AZt + 2Z⊤
t Σ

2HtZt .

with

Σ =

(
0 0
0 σ

)
where we used the mean value theorem with

Ht = ∇2logpT−t =

(
Hxx

t Hxv
t

Htxv Hvv
t

)
.
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Log-concavity is not enough for CLD (counterexample).

Take pt(x , v) that is (1− c)-log-concave with,

Ht =

(
−1 c
c −1

)
, 0 < c < 1; Spec(Ht) = −1± c ,

Then with Σ = diag(0, σ) and Z = (Zx ,Zv ),

2Z⊤Σ2HtZ = 2σ2
(
− c ZxZv − Z 2

v

)
.

Choose Zx > 0, Zv < 0 with ratio |Zx |/|Zv | > 1/c. Then the RHS
becomes positive.

Takeaway: even though pt is log-concave, the projected curvature
Σ2Ht is not negative semidefinite. Uniform contraction is hopeless.
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Solution 1: Long-term regularity of the renormalized score

Idea. Introduce a renormalized formulation of the backward process:

d
←−
U t = Ã

←−
U tdt +Σ2∇ log p̃T−t(

←−
U t)dt +ΣdBt , p̃t :=

pt
p∞

.

Key properties.

1. Ã is negative definite.

2. p̃t ”quantifies” deviation from equilibrium p∞.

3. Its curvature ∇2 log p̃t characterizes the regularity of the
score.
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Structure & regularity assumptions on pdata

Finite relative Fisher information

I(pdata | p∞) =

∫
Rd

∥∥∇ log pdata
p∞

(x)
∥∥2pdata(x)dx <∞ .

Log-Lipschitz perturbation of a strongly log-concave base

pdata(x) ∝ exp
(
− [V (x) + H(x)]

)
,

with for all x , y ∈ (Rd)2:

▶ ∃α > 0 such that αId ⪯ ∇2V (x) ;

▶ |H(x)− H(y)| ≤ L∥x − y∥ .

One–sided Lipschitz score

−
(
∇ log pdata(x)−∇ log pdata(y)

)⊤
(x−y) ≤ L0∥x−y∥2, ∀x , y ∈ Rd .
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Regularity of the renormalized score

▶ Under the previous hypotheses, there exists a constant C > 0
such that, for all t ∈ (0,T ],∥∥∇2 log p̃t(·)

∥∥ ≤ C
(
1 + 1√

t

)
e−2t = L̃t .

▶ Interpretation.
▶ Short times (t→0): the singularity in 1/

√
t remains

integrable.
▶ Long times (t→∞): exponential decay.

▶ Takeaway: The renormalized score function regularizes over
time.
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Solution 1: Long-term regularity of the renormalized score

▶ Informally, there exists M PSD matrix and η > 0 such that

d

dt
∥Zt∥2M ≤ −2Z

⊤
t MAZt + 2Z⊤

t MΣ2
(
∇ log pT−t

(←−
U x

t

)
−∇ log pT−t

(←−
U y

t

))
≤ 2(−η + σ2L̃t) ∥Zt∥2M .

Using Grönwall’s lemma, there exists C > 0, such that,

∥Zt∥2M ≤ e−2ηt+σ2
∫ t
0
L̃sds ∥Z0∥2M

≤ Ce−2ηt ∥Z0∥2M ,

� Contraction!
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Final W2 upper bound

▶ From contraction in the extended phase space, the three
sources of errors (mixing, approximation, and discretization)
can be controlled jointly:

W2

(
πdata⊗πv , L

(
Ūθ

T

))
≤

c1 e
−c2T W2(πdata⊗πv , π∞) + c1σ

2M + c1
√
h .

▶ Projecting onto the position component X (PX (x , v) = x)
preserves the W2 distance, since PX is 1–Lipschitz:

W2

(
πdata, L

(
X̄ θ
T

))
≤ W2

(
πdata⊗πv , L

(
Ūθ

T

))
.
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Solution 2: restore ellipticity

Idea. Inject a small amount of noise on all coordinates:

Σ =

(
ε 0

0 σ

)
, ε > 0.

Consequences.

▶ Uniform ellipticity: (multi-dimensional O.U. structure).

▶ More quantitative bounds : standard log-concave tools apply.

▶ Practice: ε provides a new parameters to control the regularity
of the sample paths.
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Solution 2: Numerical aspects

Empirics (Funnel dataset, d = 100).

▶ Small ε often improves sliced-W2 vs. ε = 0 (CLD baseline).

▶ Trade-off: slight sensitivity to other hyperparameters.

0.0 0.2 0.4 0.6 0.8 1.0
ε

100

M
ea

n 
E

rr
or

a=0.1
a=0.25
a=0.5
a=1.0
a=2.0

Mean W2 over 5 runs; error bars represent ± one standard deviation.
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Funnel distribution scatter plot
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Figure: 10 000 samples from a funnel distribution in dimension 50. Plot of
the 1st and 2nd dimension (left) and plot of the 1st, 2nd and 3rd
dimension (right).
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Solution 2: Numerical aspects
▶ Even with a small ε > 0, structure-preserving integrators

can further improve performance.
▶ But: higher computational cost — the network must learn full

gradients ∇ log pt(x , v) instead of velocity-only terms
∇v log pt(v), doubling the effective dimension.
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