

Critically-Damped Langevin Score-based Generative Models:

introduction, motivation and convergence.

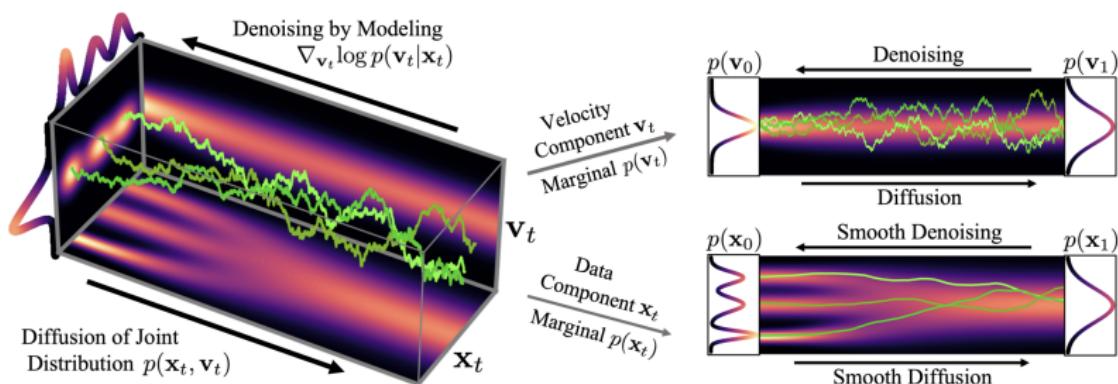
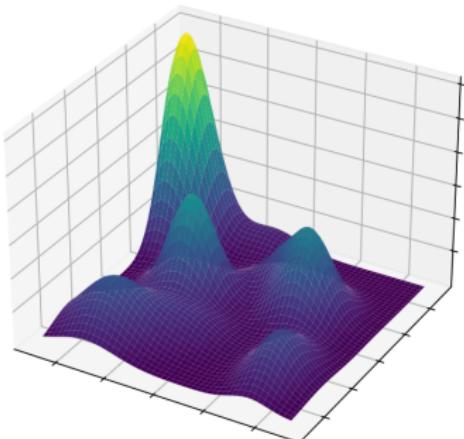


Image taken from [Dockhorn et al. \(2022\)](#).

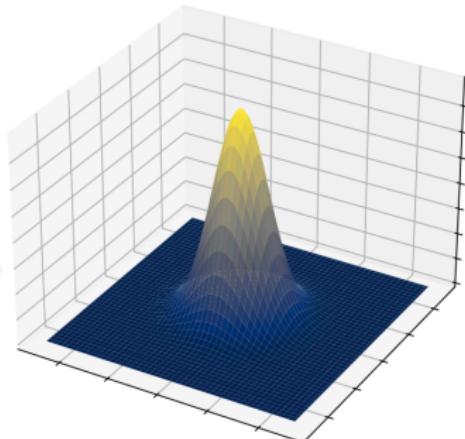
Generative modeling framework.

- ▶ $\mathcal{D} = \{x_i\}_{i=1}^n \in (\mathbb{R}^d)^n$ a collection of i.i.d. samples from an **unknown** distribution π_{data}
- ▶ Goal: **generate new samples from** π_{data} (i.e. find a proba π_∞ and a simulable kernel Q such that $\pi_{\text{data}} \simeq \pi_\infty Q$).

Complex data distribution π_{data}



Easy-to-sample distribution π_∞



$$\pi_\infty Q$$

SGMs Philosophy.

- ▶ “Creating noise from data is easy; creating data from noise is generative modeling.” (Song et al., 2021)

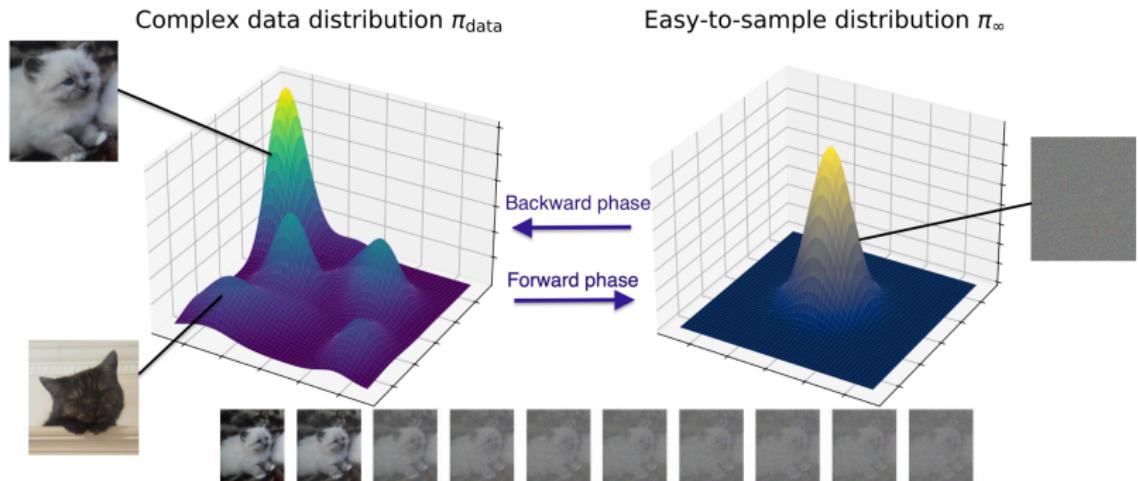


Table of Contents

1. Introduction to SGMs

- 1.1 Forward-backward SDEs
- 1.2 SGMs in practice.

2. Diffusion on an extended phase space.

- 2.1 Can we make other choices of forward ?
- 2.2 Turn CLD into a generative model.

3. Theoretical result

- 3.1 Convergence results for VP and VE processes.
- 3.2 Convergence of CLD.

Table of Contents

1. Introduction to SGMs

- 1.1 Forward-backward SDEs
- 1.2 SGMs in practice.

2. Diffusion on an extended phase space.

- 2.1 Can we make other choices of forward ?
- 2.2 Turn CLD into a generative model.

3. Theoretical result

- 3.1 Convergence results for VP and VE processes.
- 3.2 Convergence of CLD.

From data to noise: the forward process.

- ▶ $(\vec{X}_t)_{t \in [0, T]}$ is solution to an **Ornstein–Uhlenbeck** process:

$$d\vec{X}_t = -\vec{X}_t dt + \sqrt{2} dB_t, \quad \vec{X}_0 \sim \pi_{\text{data}}.$$

- ▶ If unfamiliar with SDEs: limit of a discrete-time process given by

$$X_{k+h} = \sqrt{1-2h} X_k + \sqrt{2h} Z_k, \quad Z_k \sim \mathcal{N}(0, I_d), \quad h \rightarrow 0.$$

- ▶ **Intuition:** destroys signal via Gaussian noise and rescaling.

SGMs through SDE: more on the forward process.

- ▶ The noising procedure implies a scaling down of the data points $d\vec{X}_t = -\vec{X}_t dt$,

SGMs through SDE: more on the forward process.

- ▶ ... and a Gaussian noising process $d\vec{X}_t = \sqrt{2}dB_t$,

SGMs through SDE: more on the forward process.

From noise to data: the backward process.

- ▶ This forward process admits a **time-reversed process** (Anderson, 1982; Cattiaux et al., 2021), i.e.

$$\left(\overleftarrow{X}_t \right)_{t \in [0, T]} \stackrel{\mathcal{L}}{=} \left(\overrightarrow{X}_{T-t} \right)_{t \in [0, T]}$$

with,

$$d\overleftarrow{X}_t = \left(\overleftarrow{X}_t + 2 \underbrace{\nabla \log p_{T-t}(\overleftarrow{X}_t)}_{\text{score function}} \right) dt + \sqrt{2} dB_t, \quad \overleftarrow{X}_0 \sim p_T.$$

with p_t the p.d.f. of \overrightarrow{X}_t .

- ▶ The score term drives the backward process towards **regions of high probability**.
- ▶ This is (**almost**) a **generative model**: $\overleftarrow{X}_T \sim \pi_{\text{data}}$.

Table of Contents

1. Introduction to SGMs

- 1.1 Forward-backward SDEs
- 1.2 SGMs in practice.

2. Diffusion on an extended phase space.

- 2.1 Can we make other choices of forward ?
- 2.2 Turn CLD into a generative model.

3. Theoretical result

- 3.1 Convergence results for VP and VE processes.
- 3.2 Convergence of CLD.

SGMs in Practice I: mixing time.

- ▶ Let Q_t be the semigroup of \overleftarrow{X}_t :

$$Q_t(x, dy) = \mathbb{P} \left(\overleftarrow{X}_t \in dy \mid \overleftarrow{X}_0 = x \right).$$

- ▶ **Time-reversal holds when $\overleftarrow{X}_0 \sim p_T$** , i.e.

$$\pi_{\text{data}} = p_T Q_T.$$

- ▶ But p_t depends on π_{data} :

$$p_t(x_t) = \int_{\mathbb{R}^d} \underbrace{p_t(x_t | x_0)}_{\text{p.d.f. of } \vec{X}_t | \vec{X}_0} \pi_{\text{data}}(dx_0).$$

- ▶ In practice, one wants an **independent** and **easy-to-sample** probability π_∞ to initialize the generative model.

SGMs in Practice I: mixing time.

- ▶💡 leverage the ergodicity of the O–U kernel.
- ▶ **Forward process** admits time marginal with $Z \sim \mathcal{N}(0, I_d)$ and $Z \perp X_0$:

$$\vec{X}_t = e^{-t} \vec{X}_0 + \sqrt{1 - e^{-2t}} Z$$

- ▶ For T large, the initial conditions are forgotten:

$$p_T \approx \pi_\infty \sim \mathcal{N}(0, I_d).$$

⚠ **Mixing Time Error:** $\pi_{\text{data}} \simeq \pi_\infty Q_T$

SGMs in practice II: learn the score function.

- ▶ The backward process depends on the score function $\nabla \log p_t(x)$.
- ▶ The forward process marginals can be sampled exactly.
- ▶ Train a **deep neural network** $s_\theta : [0, T] \times \mathbb{R}^d \mapsto \mathbb{R}^d$ to minimize:

$$\mathcal{L}_{\text{naive}}(\theta) = \mathbb{E} \left[\left\| s_\theta \left(\tau, \vec{X}_\tau \right) - \nabla \log p_\tau \left(\vec{X}_\tau \right) \right\|^2 \right],$$

with $\tau \sim \mathcal{U}(0, T)$ independent of the forward process $(\vec{X}_t)_{t \geq 0}$.

- ▶ But $p_\tau(x)$ is **unknown** !

SGMs in practice II: learn the score function.

- ▶ **💡** its **conditional version** shares the same optimum (Hyvärinen and Dayan, 2005; Vincent, 2011):

$$\mathcal{L}_{\text{score}}(\theta) = \mathbb{E} \left[\|s_\theta(\tau, \vec{X}_\tau) - \nabla \log p_\tau(\vec{X}_\tau | \vec{X}_0)\|^2 \right].$$

- ▶ The conditional score is explicit:

$$\nabla \log p_\tau(\vec{X}_\tau | \vec{X}_0) = \frac{m_\tau \vec{X}_0 - \vec{X}_\tau}{\sigma_\tau^2} = -\frac{Z}{\sigma_\tau}$$

with $m_\tau = e^{-\tau}$ and $\sigma_\tau = \sqrt{1 - m_\tau^2}$.

- ▶ Score matching Neural Networks writes as,

$$\mathcal{L}_{\text{score}}(\theta) = \mathbb{E} \left[\left\| s_\theta(\tau, \vec{X}_\tau) + \frac{Z}{\sigma_\tau} \right\|^2 \right].$$

⚠️ Approximation error: $\pi_{\text{data}} \approx \pi_\infty Q_T^\theta$

SGMs in practice III: simulate from the backward kernel.

- ▶ The backward drift is **non-linear**: non-Gaussian.
- ▶💡 discretize $[0, T]$ in N steps with $t_k = kh$, $h = T/N$.
- ▶ Euler–Maruyama discretization:

$$\bar{X}_{t_{k+1}} = \bar{X}_{t_k} + h \left(\bar{X}_{t_k} + 2 s_\theta(T - t_k, \bar{X}_{t_k}) \right) + \sqrt{2h} Z_k$$

- ▶ Other approaches preserving the time marginals exist (e.g. ODE sampling).

⚠ **Discretization error:** $\pi_{\text{data}} \approx \pi_\infty Q_{T,N}^\theta := \hat{\pi}_{\infty,N}^\theta$

Table of Contents

1. Introduction to SGMs

- 1.1 Forward-backward SDEs
- 1.2 SGMs in practice.

2. Diffusion on an extended phase space.

- 2.1 Can we make other choices of forward ?
- 2.2 Turn CLD into a generative model.

3. Theoretical result

- 3.1 Convergence results for VP and VE processes.
- 3.2 Convergence of CLD.

Draw inspiration from MCMC.

- ▶ In **sampling**, one wants to sample from $\pi \propto e^{-U}$.
 - ▶ When $U : \mathbb{R}^d \rightarrow \mathbb{R}$ is smooth and typically strongly convex,

$$dX_t = -\nabla U(X_t)dt + \sqrt{2}dB_t$$

admits π as invariant measure.

- ▶ Sampling can be done by discretization (ULA) or accept–reject corrections (MALA).
- ▶ This can be extended to a **kinetic setting**:

$$d \begin{pmatrix} X_t \\ V_t \end{pmatrix} = \begin{pmatrix} V_t \\ -(V_t + \nabla U(X_t)) \end{pmatrix} dt + \sqrt{2} \begin{pmatrix} 0 \\ 1 \end{pmatrix} dB_t$$

- ▶ Stationary distribution $\pi(dx, dv) \propto e^{-U(x) - \frac{\|v\|^2}{2}} dx dv$.

Extending the Phase Space of SGMs.

- 💡 Augment data space with a **velocity component** $(V_t)_{t \in [0, T]}$.
- 💡 X_t and V_t are coupled through *Hamiltonian-like* interactions.
- 💡 **Noise injection** only on the **velocity** component.

Forward process: for $\vec{\mathbf{U}}_t = (\vec{X}_t, \vec{V}_t)^\top \in \mathbb{R}^2$ and $B_t \in \mathbb{R}^2$,

$$d \begin{pmatrix} X_t \\ V_t \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & -2 \end{pmatrix} \begin{pmatrix} X_t \\ V_t \end{pmatrix} dt + \begin{pmatrix} 0 & 0 \\ 0 & \sigma \end{pmatrix} dB_t, (X_0, V_0) \sim \pi_{\text{data}} \otimes \pi_v,$$

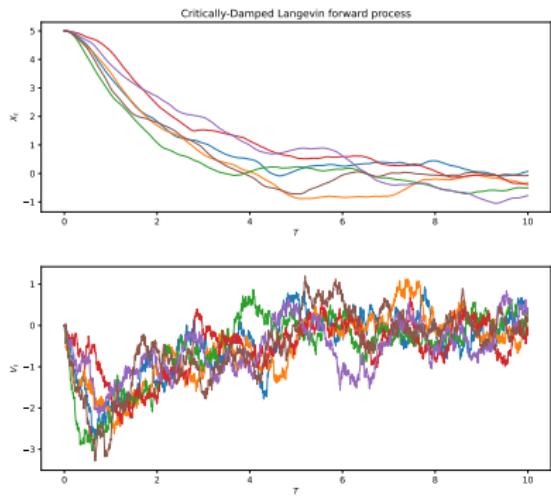
where $\pi_v \sim \mathcal{N}(0, v^2)$. We use compact matrix notation,

$$d \vec{\mathbf{U}}_t = A \vec{\mathbf{U}}_t dt + \Sigma dB_t, \quad \vec{\mathbf{U}}_0 \sim \pi_{\text{data}} \otimes \pi_v.$$

Noising process comparison.



OU process



CLD process (position & velocity)

Table of Contents

1. Introduction to SGMs

- 1.1 Forward-backward SDEs
- 1.2 SGMs in practice.

2. Diffusion on an extended phase space.

- 2.1 Can we make other choices of forward ?
- 2.2 Turn CLD into a generative model.

3. Theoretical result

- 3.1 Convergence results for VP and VE processes.
- 3.2 Convergence of CLD.

What makes a forward SDE a generative model?

- ▶ A well-chosen **noising process** must satisfy three properties:
 1. **Interpolation:** transforms the data distribution π_{data} into an easy-to-sample prior π_∞ .
 2. **Learnability:** time-dependent score functions $\nabla \log p_t(\cdot)$ can be learned.
 3. **Efficient sampling:** marginals can be efficiently simulated.
- ▶ Examples: Variance-Preserving (VP), Variance-Exploding (VE), flow matching and **Critically-Damped Langevin (CLD) diffusions**.

1. Interpolate between the data distribution and a prior.

- ▶ The forward process evolves in the **extended phase space**

$$\overrightarrow{\mathbf{U}}_t = (\overrightarrow{X}_t, \overrightarrow{V}_t)^\top \in \mathbb{R}^2 \text{ as}$$

$$\overrightarrow{\mathbf{U}}_t = e^{tA} \overrightarrow{\mathbf{U}}_0 + \int_0^t e^{(t-s)A} \Sigma dB_s. \quad (1)$$

and converges to $\pi_\infty \sim \mathcal{N}(0_2, \Sigma_\infty)$.

- ▶ Time reversal property applies on the extended space, *i.e.*

$$(\overrightarrow{X}_t, \overrightarrow{V}_t)_{t \in [0, T]} = (\overleftarrow{X}_{T-t}, \overleftarrow{V}_{T-t})_{t \in [0, T]}$$

- ▶ leading to the backward SDE:

$$d\overleftarrow{\mathbf{U}}_t = -A\overleftarrow{\mathbf{U}}_t dt + \Sigma^2 \nabla \log p_{T-t}(\overleftarrow{\mathbf{U}}_t) dt + \Sigma dB_t,$$

with $p_t(x, v)$ de p.d.f of (1).

2. Score function can be learned

- ▶ As before s_θ trained to learn conditional score but on the whole phase-space state $\vec{\mathbf{U}}_t = (\vec{X}_t, \vec{V}_t)$:

$$\mathcal{L}_{\text{DSM}}(\theta) = \mathbb{E} \left[\|s_\theta(t, \vec{\mathbf{U}}_t) - \nabla \log p_t(\vec{\mathbf{U}}_t | \vec{\mathbf{U}}_0)\|^2 \right].$$

- ▶ However, we know that $\vec{V}_0 \sim \mathcal{N}(0, v^2)$, so we can marginalize $\vec{\mathbf{U}}_0 = (\vec{X}_0, \vec{V}_0)^\top$ over V_0 , leading to a **closed-form expression** of $\nabla \log p_t(\vec{\mathbf{U}}_t | \vec{X}_0)$:

$$\mathcal{L}_{\text{HSM}}(\theta) = \mathbb{E} \left[\|s_\theta(t, \vec{\mathbf{U}}_t) - \nabla \log p_t(\vec{\mathbf{U}}_t | \vec{X}_0)\|^2 \right],$$

yielding **more stable training** objective.

3. Marginals can be sampled.

Different numerical schemes:

- ▶ Euler–Maruyama (standard baseline);
- ▶ Symplectic integrators design for position-velocity state-spaces.

Combining all this leads to **better numerical performance** (Dochhorn et al., 2022):

Table 1: Unconditional CIFAR-10 generative performance.

Class	Model	NLL \downarrow	FID \downarrow
Score	CLD-SGM (Prob. Flow) (ours)	≤3.31	2.25
	CLD-SGM (SDE) (ours)	-	2.23
Score	DDPM++, VPSDE (Prob. Flow) (Song et al., 2021c)	3.13	3.08
	DDPM++, VPSDE (SDE) (Song et al., 2021c)	-	2.41
	DDPM++, sub-VP (Prob. Flow) (Song et al., 2021c)	2.99	2.92
	DDPM++, sub-VP (SDE) (Song et al., 2021c)	-	2.41
	NCSN++, VESDE (SDE) (Song et al., 2021c)	-	2.20
	LSGM (Vahdat et al., 2021)	≤3.43	2.10
	LSGM-100M (Vahdat et al., 2021)	≤2.96	4.60
	DDPM (Ho et al., 2020)	≤3.75	3.17
	NCSN (Song & Ermon, 2019)	-	25.3
	Adversarial DSM (Jolicoeur-Martineau et al., 2021b)	-	6.10
	Likelihood SDE (Song et al., 2021b)	2.84	2.87
	DDIM (100 steps) (Song et al., 2021a)	-	4.16
	FastDDPM (100 steps) (Kong & Ping, 2021)	-	2.86
	Improved DDPM (Nichol & Dhariwal, 2021)	3.37	2.90
	VDM (Kingma et al., 2021)	≤2.49	7.41 (4.00)
	UDM (Kim et al., 2021)	3.04	2.33
	D3PM (Austin et al., 2021)	≤3.44	7.34
	Gotta Go Fast (Jolicoeur-Martineau et al., 2021a)	-	2.44
	DDPM Distillation (Luhman & Luhman, 2021)	-	9.36

Table of Contents

1. Introduction to SGMs

- 1.1 Forward-backward SDEs
- 1.2 SGMs in practice.

2. Diffusion on an extended phase space.

- 2.1 Can we make other choices of forward ?
- 2.2 Turn CLD into a generative model.

3. Theoretical result

- 3.1 Convergence results for VP and VE processes.
- 3.2 Convergence of CLD.

A variety of convergence results

- ▶ Assume score function is appropriately learned e.g.

$$\|s_\theta(t, \mathbf{U}_t) - \nabla \log p_t(\mathbf{U}_t)\|_{L_2} \leq M$$

where the expectation is taken under some appropriately chosen stochastic process.

- ▶ Using this framework a **variety of upper bounds** to the **distance between the data distribution and the generated distribution** $d(\pi_{\text{data}}, \hat{\pi})$ have been established for various metrics:
 - ▶ For the total variation distance and Kullback-Leibler divergence: De Bortoli et al. (2021); Conforti et al. (2023); Bortoli et al. (2023); Chen et al. (2023); Chen (2023).
 - ▶ For the Wasserstein distance: Lee et al. (2022, 2023); Bruno et al. (2023); Gao et al. (2023).

Wasserstein-2: upper bounds.

- The \mathcal{W}_2 distance is defined as

$$\mathcal{W}_2^2(\pi_{\text{data}}, \hat{\pi}_{\infty, N}^{\theta}) = \inf \left\{ \mathbb{E} \left[\left\| \vec{X}_0 - \bar{X}_{\infty, N}^{\theta} \right\|^2 \right], \vec{X}_0 \sim \pi_{\text{data}}, \bar{X}_{\infty, N}^{\theta} \sim \hat{\pi}_{\infty, N}^{\theta} \right\}$$

- Control the errors already presented:

$$\begin{aligned} \mathcal{W}_2(\pi_{\text{data}}, \hat{\pi}_{\infty, N}^{\theta}) &\leq \underbrace{\mathcal{W}_2(\mathcal{L}(\vec{X}_T), \mathcal{L}(\bar{X}_N))}_{\text{Discretization}} + \underbrace{\mathcal{W}_2(\mathcal{L}(\bar{X}_N), \mathcal{L}(\bar{X}_{\infty, N}))}_{\text{Mixing time}} \\ &\quad + \underbrace{\mathcal{W}_2(\mathcal{L}(\bar{X}_{\infty, N}), \mathcal{L}(\bar{X}_{\infty, N}^{\theta}))}_{\text{Score approx.}} \\ &\leq e^{-T} c_1 + M c_2 + \sqrt{h} c_3, \end{aligned}$$

with $T > 0$ the diffusion time, M the score approximation quality and $h = T/N$ the discretization step size.

Backward contraction for O.U forward I.

- ▶ Proof relies **mostly** on **contraction for Euclidean norm**:

$$\mathcal{W}_2^2(\pi_{\text{data}}, \widehat{\pi}_{\infty, N}^{\theta}) \leq \left\| \overrightarrow{X}_0 - \bar{X}_{\infty, N}^{\theta} \right\|_{L_2}^2$$

- ▶ Fix $x, y \in (\mathbb{R})^2$:

$$d\overleftarrow{X}_t^x = \left(\overleftarrow{X}_t^x + 2\nabla \log p_{T-t}(\overleftarrow{X}_t^x) \right) dt + \sqrt{2} dB_t, \quad \overleftarrow{X}_0 = x \text{ p.s.}$$

$$d\overleftarrow{X}_t^y = \left(\overleftarrow{X}_t^y + 2\nabla \log p_{T-t}(\overleftarrow{X}_t^y) \right) dt + \sqrt{2} dB_t, \quad \overleftarrow{X}_0 = y \text{ p.s.}$$

- ▶ Consider a **synchronous coupling** and introduce the difference ODE $Z_t = \overleftarrow{X}_t^x - \overleftarrow{X}_t^y$, which satisfies

$$dZ_t = Z_t + \underbrace{2 \left(\nabla \log p_{T-t}(\overleftarrow{X}_t^x) - \nabla \log p_{T-t}(\overleftarrow{X}_t^y) \right) dt}_{:= \Delta_t}$$

- ▶ and study

$$\frac{d}{dt} \|Z_t\|^2 = 2Z_t^\top (dZ_t) = 2 \left(\|Z_t\|^2 + 2 \langle Z_t, \Delta_t \rangle \right).$$

Backward contraction for O.U forward II.

- ▶ If p_{T-t} is **λ -log-concave**, then, there exists $\lambda > 0$, such that
 - ▶ $\langle Z_t, \nabla \log p_{T-t}(\overset{\leftarrow}{X}_t^x) - \nabla \log p_{T-t}(\overset{\leftarrow}{X}_t^y) \rangle \leq -\lambda \|Z_t\|^2$;
 - ▶ $\nabla^2 \log p_{T-t} \preccurlyeq -\lambda I_d$.
- ▶ Therefore, using Grönwall inequality,

$$\begin{aligned}\frac{d}{dt} \|Z_t\|^2 &\leq 2(1 - 2\lambda) \|Z_t\|^2 \\ &\leq e^{2(1-2\lambda)t} \|Z_0\|^2.\end{aligned}$$

- ▶ **Takeaway:** strong log-concavity ($\lambda > 1/2$) **gives contraction** for $\|\cdot\|$ which implies \mathcal{W}_2 contraction.

Table of Contents

1. Introduction to SGMs

- 1.1 Forward-backward SDEs
- 1.2 SGMs in practice.

2. Diffusion on an extended phase space.

- 2.1 Can we make other choices of forward ?
- 2.2 Turn CLD into a generative model.

3. Theoretical result

- 3.1 Convergence results for VP and VE processes.
- 3.2 Convergence of CLD.

Log-concavity is not enough for CLD

$$d\overleftarrow{\mathbf{U}}_t = -A\overleftarrow{\mathbf{U}}_t dt + \Sigma^2 \nabla \log p_{T-t} \left(\overleftarrow{\mathbf{U}}_t \right) dt + \Sigma dB_t,$$

- ▶ Consider a synchronous coupling and study the stability of the difference ODE $\mathbf{Z}_t = \overleftarrow{\mathbf{U}}_t^x - \overleftarrow{\mathbf{U}}_t^y$, which satisfies

$$\frac{d}{dt} (\|\mathbf{Z}_t\|^2) = -2\mathbf{Z}_t^\top A\mathbf{Z}_t + 2\mathbf{Z}_t^\top \Sigma^2 H_t \mathbf{Z}_t.$$

with

$$\Sigma = \begin{pmatrix} 0 & 0 \\ 0 & \sigma \end{pmatrix}$$

where we used the mean value theorem with

$$H_t = \nabla^2 \log p_{T-t} = \begin{pmatrix} H_t^{xx} & H_t^{xv} \\ H_t^{vx} & H_t^{vv} \end{pmatrix}.$$

Log-concavity is not enough for CLD (counterexample).

Take $p_t(x, v)$ that is $(1 - c)$ -**log-concave** with,

$$H_t = \begin{pmatrix} -1 & c \\ c & -1 \end{pmatrix}, \quad 0 < c < 1; \quad \text{Spec}(H_t) = -1 \pm c,$$

Then with $\Sigma = \text{diag}(0, \sigma)$ and $\mathbf{Z} = (Z_x, Z_v)$,

$$2 \mathbf{Z}^\top \Sigma^2 H_t \mathbf{Z} = 2\sigma^2 (-c Z_x Z_v - Z_v^2).$$

Choose $Z_x > 0$, $Z_v < 0$ with ratio $|Z_x|/|Z_v| > 1/c$. Then the RHS becomes **positive**.

Takeaway: even though p_t is log-concave, the projected curvature $\Sigma^2 H_t$ is *not* negative semidefinite. Uniform contraction is hopeless.

Solution 1: Long-term regularity of the renormalized score

Idea. Introduce a *renormalized* formulation of the backward process:

$$d\overleftarrow{\mathbf{U}}_t = \tilde{A} \overleftarrow{\mathbf{U}}_t dt + \Sigma^2 \nabla \log \tilde{p}_{T-t}(\overleftarrow{\mathbf{U}}_t) dt + \Sigma dB_t, \quad \tilde{p}_t := \frac{p_t}{p_\infty}.$$

Key properties.

1. \tilde{A} is **negative definite**.
2. \tilde{p}_t "quantifies" **deviation from equilibrium** p_∞ .
3. Its curvature $\nabla^2 \log \tilde{p}_t$ characterizes the **regularity of the score**.

Structure & regularity assumptions on p_{data}

Finite relative Fisher information

$$\mathcal{I}(p_{\text{data}} \mid p_{\infty}) = \int_{\mathbb{R}^d} \left\| \nabla \log \frac{p_{\text{data}}}{p_{\infty}}(x) \right\|^2 p_{\text{data}}(x) dx < \infty.$$

Log-Lipschitz perturbation of a strongly log-concave base

$$p_{\text{data}}(x) \propto \exp \left(-[V(x) + H(x)] \right),$$

with for all $x, y \in (\mathbb{R}^d)^2$:

- ▶ $\exists \alpha > 0$ such that $\alpha I_d \preceq \nabla^2 V(x)$;
- ▶ $|H(x) - H(y)| \leq L \|x - y\|$.

One-sided Lipschitz score

$$-(\nabla \log p_{\text{data}}(x) - \nabla \log p_{\text{data}}(y))^{\top} (x - y) \leq L_0 \|x - y\|^2, \quad \forall x, y \in \mathbb{R}^d.$$

Regularity of the renormalized score

- ▶ Under the previous hypotheses, there exists a constant $C > 0$ such that, for all $t \in (0, T]$,

$$\|\nabla^2 \log \tilde{p}_t(\cdot)\| \leq C \left(1 + \frac{1}{\sqrt{t}}\right) e^{-2t} = \tilde{L}_t.$$

- ▶ **Interpretation.**
 - ▶ **Short times ($t \rightarrow 0$):** the singularity in $1/\sqrt{t}$ remains integrable.
 - ▶ **Long times ($t \rightarrow \infty$):** exponential decay.
- ▶ **Takeaway:** The renormalized score function **regularizes over time.**

Solution 1: Long-term regularity of the renormalized score

- ▶ Informally, there exists \mathfrak{M} PSD matrix and $\eta > 0$ such that

$$\begin{aligned}\frac{d}{dt} \|\mathbf{Z}_t\|_{\mathfrak{M}}^2 &\leq -2\mathbf{Z}_t^\top \mathfrak{M} A \mathbf{Z}_t + 2\mathbf{Z}_t^\top \mathfrak{M} \Sigma^2 \left(\nabla \log p_{T-t} \left(\overleftarrow{\mathbf{U}}_t^x \right) - \nabla \log p_{T-t} \left(\overleftarrow{\mathbf{U}}_t^y \right) \right) \\ &\leq 2(-\eta + \sigma^2 \tilde{L}_t) \|\mathbf{Z}_t\|_{\mathfrak{M}}^2.\end{aligned}$$

Using Grönwall's lemma, there exists $C > 0$, such that,

$$\begin{aligned}\|\mathbf{Z}_t\|_{\mathfrak{M}}^2 &\leq e^{-2\eta t + \sigma^2 \int_0^t \tilde{L}_s ds} \|\mathbf{Z}_0\|_{\mathfrak{M}}^2 \\ &\leq Ce^{-2\eta t} \|\mathbf{Z}_0\|_{\mathfrak{M}}^2,\end{aligned}$$

⚠️ Contraction!

Final \mathcal{W}_2 upper bound

- ▶ From contraction in the extended phase space, the three sources of errors (mixing, approximation, and discretization) can be controlled jointly:

$$\mathcal{W}_2\left(\pi_{\text{data}} \otimes \pi_v, \mathcal{L}\left(\bar{\mathbf{U}}_T^\theta\right)\right) \leq c_1 e^{-c_2 T} \mathcal{W}_2(\pi_{\text{data}} \otimes \pi_v, \pi_\infty) + c_1 \sigma^2 M + c_1 \sqrt{h}.$$

- ▶ Projecting onto the position component X ($P_X(x, v) = x$) preserves the \mathcal{W}_2 distance, since P_X is 1-Lipschitz:

$$\mathcal{W}_2\left(\pi_{\text{data}}, \mathcal{L}\left(\bar{X}_T^\theta\right)\right) \leq \mathcal{W}_2\left(\pi_{\text{data}} \otimes \pi_v, \mathcal{L}\left(\bar{\mathbf{U}}_T^\theta\right)\right).$$

Solution 2: restore ellipticity

Idea. Inject a small amount of noise on *all* coordinates:

$$\Sigma = \begin{pmatrix} \varepsilon & 0 \\ 0 & \sigma \end{pmatrix}, \quad \varepsilon > 0.$$

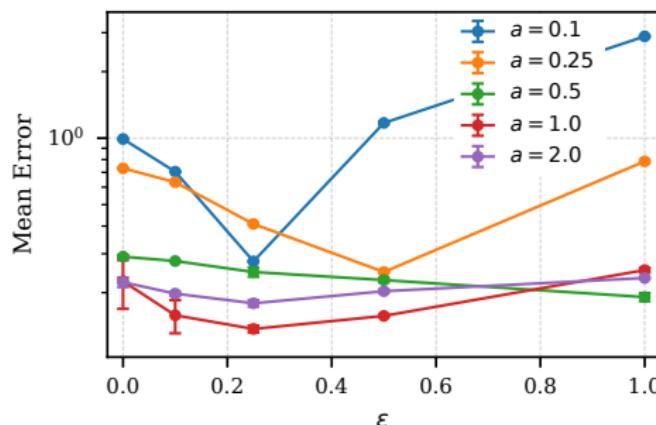
Consequences.

- ▶ **Uniform ellipticity:** (multi-dimensional O.U. structure).
- ▶ **More quantitative bounds :** standard log-concave tools apply.
- ▶ **Practice:** ε provides a new parameters to control the regularity of the sample paths.

Solution 2: Numerical aspects

Empirics (Funnel dataset, $d = 100$).

- ▶ Small ε often **improves** sliced- \mathcal{W}_2 vs. $\varepsilon = 0$ (CLD baseline).
- ▶ **Trade-off:** slight sensitivity to other hyperparameters.



Mean \mathcal{W}_2 over 5 runs; error bars represent \pm one standard deviation.

Funnel distribution scatter plot

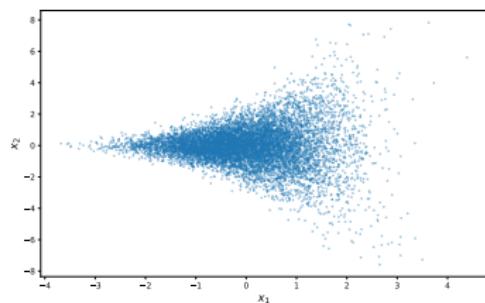
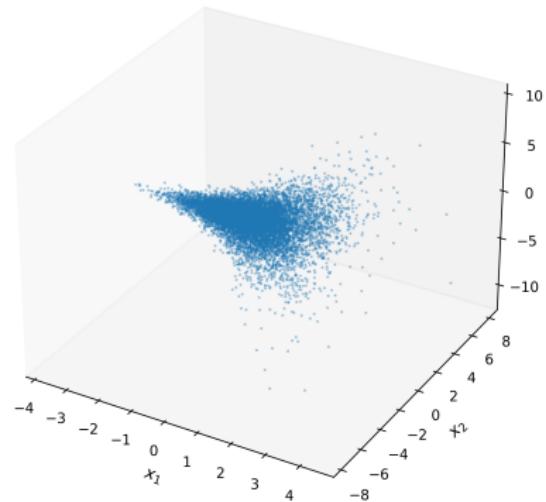
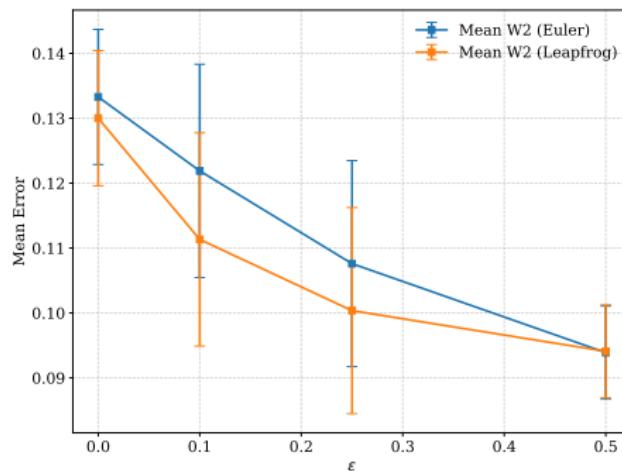


Figure: 10 000 samples from a funnel distribution in dimension 50. Plot of the 1st and 2nd dimension (left) and plot of the 1st, 2nd and 3rd dimension (right).

Solution 2: Numerical aspects

- ▶ Even with a small $\varepsilon > 0$, **structure-preserving integrators** can further improve performance.
- ▶ **But:** higher computational cost — the network must learn full gradients $\nabla \log p_t(x, v)$ instead of velocity-only terms $\nabla_v \log p_t(v)$, **doubling the effective dimension**.



ooo

B. D. Anderson. Reverse-time diffusion equation models. *Stochastic Processes and their Applications*, 12(3):313–326, 1982.

V. D. Bortoli, J. Thornton, J. Heng, and A. Doucet. Diffusion schrödinger bridge with applications to score-based generative modeling, 2023.

S. Bruno, Y. Zhang, D.-Y. Lim, Ö. D. Akyildiz, and S. Sabanis. On diffusion-based generative models and their error bounds: The log-concave case with full convergence estimates. *arXiv preprint arXiv:2311.13584*, 2023.

P. Cattiaux, G. Conforti, I. Gentil, and C. Léonard. Time reversal of diffusion processes under a finite entropy condition. *arXiv preprint arXiv:2104.07708*, 2021.

S. Chen, S. Chewi, J. Li, Y. Li, A. Salim, and A. R. Zhang. Sampling is as easy as learning the score: theory for diffusion models with minimal data assumptions, 2023.

T. Chen. On the importance of noise scheduling for diffusion models. *arXiv preprint arXiv:2301.10972*, 2023.

G. Conforti, A. Durmus, and M. G. Silveri. Score diffusion models without early stopping: finite fisher information is all you need, 2023.

V. De Bortoli, J. Thornton, J. Heng, and A. Doucet. Diffusion schrödinger bridge with applications to score-based generative modeling. *Advances in Neural Information Processing Systems*, 34:17695–17709, 2021.

T. Dockhorn, A. Vahdat, and K. Kreis. Score-based generative modeling with critically-damped langevin diffusion. In *International Conference on Learning Representations (ICLR)*, 2022.

X. Gao, H. M. Nguyen, and L. Zhu. Wasserstein convergence guarantees for a general class of score-based generative models, 2023.

A. Hyvärinen and P. Dayan. Estimation of non-normalized statistical models by score matching. *Journal of Machine Learning Research*, 6(4), 2005.

H. Lee, J. Lu, and Y. Tan. Convergence for score-based generative modeling with polynomial complexity. *Advances in Neural Information Processing Systems*, 35:22870–22882, 2022.

H. Lee, J. Lu, and Y. Tan. Convergence of score-based generative modeling for general data distributions. In *International Conference on Algorithmic Learning Theory*, pages 946–985. PMLR, 2023.

Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based generative modeling through stochastic differential equations. *International Conference on Learning Representations (ICLR)*, 2021.

P. Vincent. A connection between score matching and denoising autoencoders. *Neural Computation*, 23(7):1661–1674, 2011. doi: 10.1162/NECO_a_00142.