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Generative Modeling Framework

> D= {x}", € (RY)" a collection of i.i.d. samples from an
unknown distribution myata.

» Goal: generate new samples from 74, (i.e. find a proba
Too and a simulable kernel @ such that Tgata =~ Too Q).

Complex data distribution mgata Easy-to-sample distribution .
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Forward-backward SDEs

> <Xt> 0.7] is solution to an Ornstein—Uhlenbeck process:
te[0, T

AX, = — X dt +v2dB;, Xo~ Taaa -

» This forward process admits a time-reversed process, i.e.

(YJ te[o,T] = <7T_t)re[o,r] with,

aX.= [ X.+2VIogpr s (?t) dt +v2dB,, Xo~ pr
—_— ———

score function

_>
with p; the p.d.f. of X; and semigroup Q; associated to Yt.

L . . c
> This is (almost) a generative model since Tqata = p7QT-
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Learning the score function

> Train a deep neural network s; : [0, T] x RY — RY to
minimize:
]

Lasne® =[5 (. %) = 1oz, (%)
with 7 ~ U(0, T) independent of the forward process (Yt)tzo-
» But p,(x) is a convolution between a Gaussian kernel and the
unknown my,g, !

> Q its conditional version shares the same optimum

Locore (0) =Ellsy (7. X+) — Vlogp, (X[ Xo) 1]

with, .
e " Xo— 77-
1— e—27’

Vlog pT(YT‘YO) =
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CLD: Extending the Phase Space of SGMs

Forward process:

¢ Augment daEa> space with a velocity component
;= (Yt, V)T € R? and couple X; and V; through
Hamiltonian-like interactions.

@ Noise injection B; € R?? only on the velocity component.
AU, = AUt + 5dB,, Ug ~ Taata @ Ty (1)
with

(0 2 (00 )
A_(l 23), Z_(O 0) and m, ~ N(0q,v?).

Backward process: This leads to the backward process:
AU, = —AU,dt + 52V log pr_, (E) dt + ¥dB;,

where p; denotes p.d.f. of (1).
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Noising Process Comparison

Critically-Damped Langevin forward process

Ornstein-Uhlenbeck forward process

OU process

CLD process
(position & velocity)
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Learning the score function (the CLD case)

» As before sy trained to learn cogditional score but on the whole
phase-space state U; = (X ¢, V¢):

Losu(0) = E[Hse(t, U.) - Viegp:(U: | ﬁo)yﬂ .

%
> However, we_>know that Vg ~ N(0,v?), so we can marginalize
G)o = (70, Vo)T over V, Ieiding to a closed-form
expression of Vlog p:(U; | Xo):

Lusu(8) = E[ss(t, Us) ~ Viog pe( U+ | Xo)*] .
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HSM vyields more stable training objective.
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diffusion time t

£(t) = L?—difference between diffused-data score and Normal score.
Figure from Dockhorn, Vahdat & Kreis (2022), Score-Based Generative
Modeling with Critically-Damped Langevin Diffusion.
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Sources of Error in CLD-SGMs |
> Let Qi(x,dy) =P ((Ut € dy|(ﬁo = x), time-reversal implies

c
Tdata = PTQRT -

> pr is not directly accessible. But for large T, the process
forgets its initialization, ﬁt = (Xt V)T €R? as

t
U, =eUo + / e(t=9AT 4B, (2)

0

and converges to oo ~ N (024, Loo).
PT = To

A Mixing-time error: Tgas =~ Too QT
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Sources of Error in CLD-SGMs I

» Score function V log p; is intractable but can be approximated
by a deep neural network sy via score matching.

so(t,Ur) — Viog pe(Ue)l|, < M

A Approximation error: Tgas & Too Qg-

» Backward drift is non-linear and should be discretized into N
finite steps (Euler-Maruyama or symplectic integrators).

A Discretization error: Ty, &~ Too Q’} N = %QC N
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W, Upper Bound

Wa(Tdatas T ) < WalL(U ), L(On) + Wa(£(Dn), £(D-c )

~
Discretization Mixing time

+ WZ(E(UOC,N)7 E(U{;,N)) )

-~

Score approximation

where T > 0 denotes the diffusion time horizon and N the number of
discretization steps.

= Standard proofs that control these errors using the strong log-
concavity of p; fail in this setting, since noise is injected only into
the velocity component, making the SDEs hypoelliptic.

= Two solutions were developed to study this kinetic algorithm.
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Solution 1: Long-term regularity of the renormalized score

Idea: Introduce a renormalized formulation of the backward process:
AU, = AUt + 22V log pr_o(U)dt + TdB:,  Bri= lfi.
o0

Key properties:

1. p: "quantifies” deviation from equilibrium p.
2. Its curvature V2 log p; characterizes the regularity of the

score, for all t € (0, T],
IV2log ()| < € (14 L)e = L.
3. Recover a bound of the type, as for general SGMs

Wz(wdata,?r;,\,) <e e+ Me++/T/Ncs.
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Solution 2: Restoring ellipticity

Idea: Inject a small amount of noise into all coordinates:
e 0
Y = ( ) , e > 0.
0 o

» Uniform ellipticity: (multi-dimensional O.U. structure).

Consequences:

> More quantitative bounds: standard log-concave tools apply.

P> In practice: provides a new parameter € to control the
regularity of the sample paths.
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Numerical lllustration
Empirical results (Funnel dataset, d = 100).
» Small ¢ often improves sliced-WV, vs. ¢ = 0 (CLD baseline).

» Trade-off: training becomes more expensive, since the network
must learn full gradients.
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Mean W, over 5 runs; error bars represent & one standard deviation.
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