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Generative Modeling Framework

▶ D = {xi}ni=1 ∈ (Rd)n a collection of i.i.d. samples from an
unknown distribution πdata.

▶ Goal: generate new samples from πdata (i.e. find a proba
π∞ and a simulable kernel Q such that πdata ≈ π∞Q).
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Forward-backward SDEs

▶
(−→
X t

)
t∈[0,T ]

is solution to an Ornstein–Uhlenbeck process:

d
−→
X t = −

−→
X tdt +

√
2 dBt ,

−→
X 0 ∼ πdata .

▶ This forward process admits a time-reversed process, i.e.(←−
X t

)
t∈[0,T ]

L
=
(−→
X T−t

)
t∈[0,T ]

with,

d
←−
X t =

←−X t + 2∇ log pT−t

(←−
X t

)
︸ ︷︷ ︸

score function

dt +
√
2dBt ,

←−
X 0 ∼ pT

with pt the p.d.f. of
−→
X t and semigroup Qt associated to

←−
X t .

▶ This is (almost) a generative model since πdata
L
= pTQT .
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Learning the score function

▶ Train a deep neural network sθ : [0,T ]× Rd 7→ Rd to
minimize:

Lnaive(θ) = E
[∥∥∥sθ (τ,−→X τ

)
−∇ log pτ

(−→
X τ

)∥∥∥2] ,

with τ ∼ U(0,T ) independent of the forward process (
−→
X t)t≥0.

▶ But pτ (x) is a convolution between a Gaussian kernel and the
unknown πdata !

▶ � its conditional version shares the same optimum

Lscore (θ) = E
[
∥sθ
(
τ,
−→
X τ

)
−∇ log pτ

(−→
X τ |
−→
X 0

)
∥2
]

with,

∇ log pτ (
−→
X τ |
−→
X 0) =

e−τ−→X 0 −
−→
X τ

1− e−2τ
.
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CLD: Extending the Phase Space of SGMs

Forward process:

� Augment data space with a velocity component−→
U t = (

−→
X t ,
−→
V t)

⊤ ∈ R2d and couple Xt and Vt through
Hamiltonian-like interactions.

� Noise injection Bt ∈ R2d only on the velocity component.

d
−→
U t = A

−→
U tdt +ΣdBt ,

−→
U 0 ∼ πdata ⊗ πv (1)

with

A =

(
0 a2

−1 −2a

)
, Σ =

(
0 0
0 σ

)
and πv ∼ N (0d , v

2) .

Backward process: This leads to the backward process:

d
←−
U t = −A

←−
U tdt +Σ2∇ log pT−t

(←−
U t

)
dt +ΣdBt ,

where pt denotes p.d.f. of (1).
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Noising Process Comparison

0 2 4 6 8 10
T

2

1

0

1

2

3

4

5

6

X t

Ornstein-Uhlenbeck forward process

OU process

0 2 4 6 8 10
T

1

0

1

2

3

4

5

X t

Critically-Damped Langevin forward process

0 2 4 6 8 10
T

3

2

1

0

1

V t

CLD process

(position & velocity)

6 / 14



Learning the score function (the CLD case)

▶ As before sθ trained to learn conditional score but on the whole
phase-space state

−→
U t = (

−→
X t ,
−→
V t):

LDSM(θ) = E
[∥∥sθ(t,−→U t)−∇ log pt(

−→
U t |

−→
U 0)

∥∥2] .
▶ However, we know that

−→
V 0 ∼ N (0, v2), so we can marginalize

−→
U 0 = (

−→
X 0,
−→
V 0)

⊤ over V0, leading to a closed-form

expression of ∇ log pt(
−→
U t |

−→
X 0):

LHSM(θ) = E
[∥∥sθ(t,−→U t)−∇ log pt(

−→
U t |

−→
X 0)

∥∥2] ,
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HSM yields more stable training objective.

ξ(t) = L2–difference between diffused-data score and Normal score.

Figure from Dockhorn, Vahdat & Kreis (2022), Score-Based Generative

Modeling with Critically-Damped Langevin Diffusion.
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Sources of Error in CLD-SGMs I

▶ Let Qt(x , dy) = P
(←−
U t ∈ dy |

←−
U 0 = x

)
, time-reversal implies

πdata
L
= pTQT .

▶ pT is not directly accessible. But for large T , the process

forgets its initialization,
−→
U t = (

−→
X t ,
−→
V t)

⊤ ∈ R2d as

−→
U t = etA

−→
U 0 +

∫ t

0
e(t−s)AΣdBs (2)

and converges to π∞ ∼ N (02d ,Σ∞).

pT ≈ π∞

� Mixing-time error: πdata ≈ π∞QT
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Sources of Error in CLD-SGMs II

▶ Score function ∇ log pt is intractable but can be approximated
by a deep neural network sθ via score matching.

∥sθ(t,Ut)−∇ log pt(Ut)∥L2 ≤ M

� Approximation error: πdata ≈ π∞Qθ
T

▶ Backward drift is non-linear and should be discretized into N
finite steps (Euler–Maruyama or symplectic integrators).
� Discretization error: πdata ≈ π∞Qθ

T ,N := π̂θ
∞,N
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W2 Upper Bound

W2(πdata, π̂
θ
∞,N) ≤ W2(L(

←−
UT ),L(ŪN)︸ ︷︷ ︸

Discretization

+W2(L(ŪN),L(Ū∞,N)︸ ︷︷ ︸
Mixing time

+W2(L(Ū∞,N),L(Ūθ
∞,N))︸ ︷︷ ︸

Score approximation

,

where T > 0 denotes the diffusion time horizon and N the number of

discretization steps.

⇒ Standard proofs that control these errors using the strong log-
concavity of pt fail in this setting, since noise is injected only into
the velocity component, making the SDEs hypoelliptic.
⇒ Two solutions were developed to study this kinetic algorithm.
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Solution 1: Long-term regularity of the renormalized score

Idea: Introduce a renormalized formulation of the backward process:

d
←−
U t = Ã

←−
U tdt +Σ2∇ log p̃T−t(

←−
U t)dt +ΣdBt , p̃t :=

pt
p∞

.

Key properties:

1. p̃t ”quantifies” deviation from equilibrium p∞.

2. Its curvature ∇2 log p̃t characterizes the regularity of the
score, for all t ∈ (0,T ],∥∥∇2 log p̃t(·)

∥∥ ≤ C
(
1 + 1√

t

)
e−2at = L̃t .

3. Recover a bound of the type, as for general SGMs

W2(πdata, π̂
θ
∞,N) ≤ e−T c1 +Mc2 +

√
T/Nc3 .
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Solution 2: Restoring ellipticity

Idea: Inject a small amount of noise into all coordinates:

Σ =

(
ε 0

0 σ

)
, ε > 0.

Consequences:

▶ Uniform ellipticity: (multi-dimensional O.U. structure).

▶ More quantitative bounds: standard log-concave tools apply.

▶ In practice: provides a new parameter ε to control the
regularity of the sample paths.
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Numerical Illustration
Empirical results (Funnel dataset, d = 100).

▶ Small ε often improves sliced-W2 vs. ε = 0 (CLD baseline).

▶ Trade-off: training becomes more expensive, since the network
must learn full gradients.
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Mean W2 over 5 runs; error bars represent ± one standard deviation.
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