

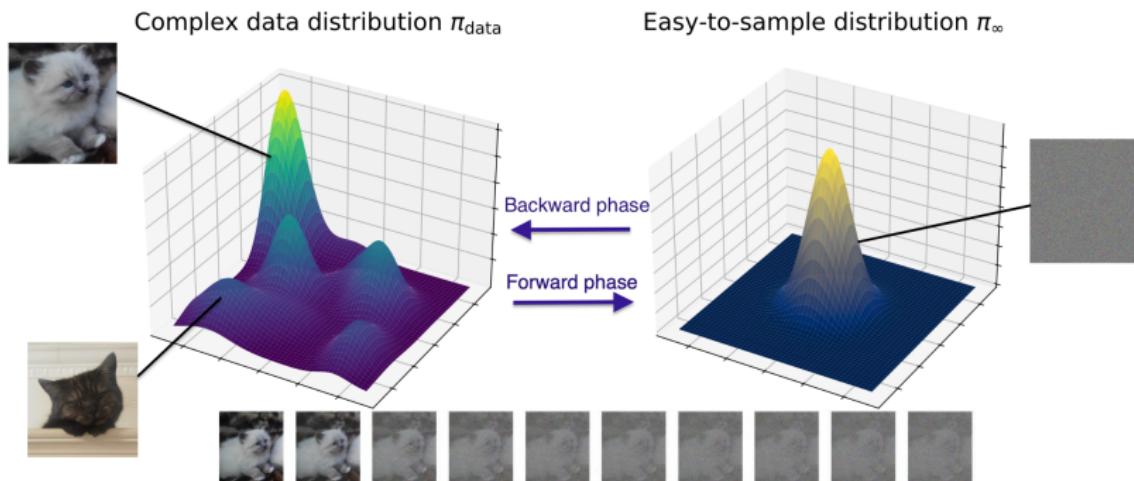
Wasserstein Convergence of Critically Damped Langevin Diffusions

Stanislas Strasman, Sobihan Surendran, Claire Boyer,
Sylvain Le Corff, Vincent Lemaire, **Antonio Ocello**.

NeurIPS 2025

Generative Modeling Framework

- ▶ $\mathcal{D} = \{x_i\}_{i=1}^n \in (\mathbb{R}^d)^n$ a collection of i.i.d. samples from an **unknown** distribution π_{data} .
- ▶ Goal: **generate new samples from** π_{data} (i.e. find a proba π_∞ and a simulable kernel Q such that $\pi_{\text{data}} \approx \pi_\infty Q$).



Forward-backward SDEs

- $(\vec{X}_t)_{t \in [0, T]}$ is solution to an **Ornstein–Uhlenbeck** process:

$$d\vec{X}_t = -\vec{X}_t dt + \sqrt{2} dB_t, \quad \vec{X}_0 \sim \pi_{\text{data}}.$$

- This forward process admits a **time-reversed process**, i.e.

$$(\overleftarrow{X}_t)_{t \in [0, T]} \stackrel{\mathcal{L}}{=} (\vec{X}_{T-t})_{t \in [0, T]} \text{ with,}$$

$$d\overleftarrow{X}_t = \left(\overleftarrow{X}_t + \underbrace{2 \nabla \log p_{T-t}(\overleftarrow{X}_t)}_{\text{score function}} \right) dt + \sqrt{2} dB_t, \quad \overleftarrow{X}_0 \sim p_T$$

with p_t the p.d.f. of \vec{X}_t and semigroup Q_t associated to \overleftarrow{X}_t .

- This is (**almost**) a **generative model** since $\pi_{\text{data}} \stackrel{\mathcal{L}}{=} p_T Q_T$.

Learning the score function

- ▶ Train a **deep neural network** $s_\theta : [0, T] \times \mathbb{R}^d \mapsto \mathbb{R}^d$ to minimize:

$$\mathcal{L}_{\text{naive}}(\theta) = \mathbb{E} \left[\left\| s_\theta \left(\tau, \vec{X}_\tau \right) - \nabla \log p_\tau \left(\vec{X}_\tau \right) \right\|^2 \right],$$

with $\tau \sim \mathcal{U}(0, T)$ independent of the forward process $(\vec{X}_t)_{t \geq 0}$.

- ▶ But $p_\tau(x)$ is a convolution between a Gaussian kernel and the **unknown** π_{data} !
- ▶💡 its **conditional version** shares the same optimum

$$\mathcal{L}_{\text{score}}(\theta) = \mathbb{E} \left[\left\| s_\theta \left(\tau, \vec{X}_\tau \right) - \nabla \log p_\tau \left(\vec{X}_\tau | \vec{X}_0 \right) \right\|^2 \right]$$

with,

$$\nabla \log p_\tau(\vec{X}_\tau | \vec{X}_0) = \frac{e^{-\tau} \vec{X}_0 - \vec{X}_\tau}{1 - e^{-2\tau}}.$$

CLD: Extending the Phase Space of SGMs

Forward process:

- 💡 Augment data space with a **velocity component**

$\vec{\mathbf{U}}_t = (\vec{X}_t, \vec{V}_t)^\top \in \mathbb{R}^{2d}$ and couple X_t and V_t through *Hamiltonian-like* interactions.

- 💡 **Noise injection** $B_t \in \mathbb{R}^{2d}$ only on the **velocity** component.

$$d\vec{\mathbf{U}}_t = A\vec{\mathbf{U}}_t dt + \Sigma dB_t, \quad \vec{\mathbf{U}}_0 \sim \pi_{\text{data}} \otimes \pi_v \quad (1)$$

with

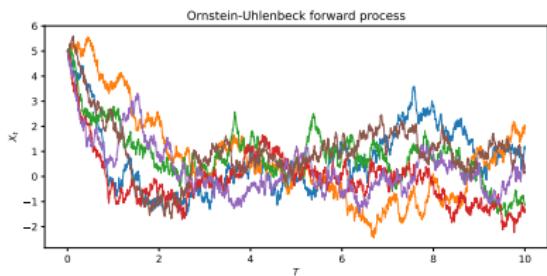
$$A = \begin{pmatrix} 0 & a^2 \\ -1 & -2a \end{pmatrix}, \quad \Sigma = \begin{pmatrix} 0 & 0 \\ 0 & \sigma \end{pmatrix} \text{ and } \pi_v \sim \mathcal{N}(\mathbf{0}_d, v^2).$$

Backward process: This leads to the backward process:

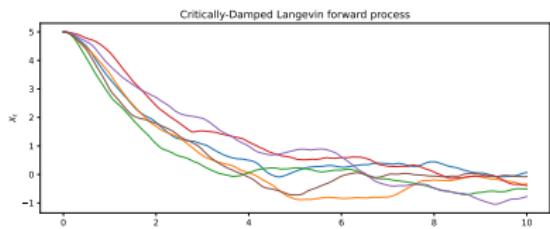
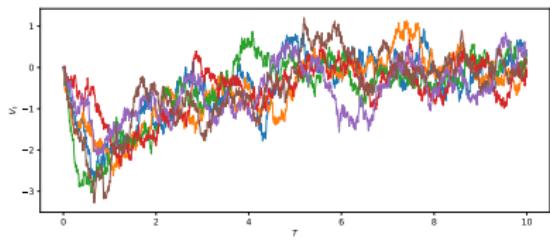
$$d\overleftarrow{\mathbf{U}}_t = -A\overleftarrow{\mathbf{U}}_t dt + \Sigma^2 \nabla \log p_{T-t}(\overleftarrow{\mathbf{U}}_t) dt + \Sigma dB_t,$$

where p_t denotes p.d.f. of (1).

Noising Process Comparison



OU process



CLD process
(position & velocity)

HSM yields **more stable** training objective.



$\xi(t) = L^2$ -difference between diffused-data score and Normal score.

Figure from Dockhorn, Vahdat & Kreis (2022), *Score-Based Generative Modeling with Critically-Damped Langevin Diffusion*.

Sources of Error in CLD-SGMs I

- ▶ Let $Q_t(x, dy) = \mathbb{P}\left(\overleftarrow{\mathbf{U}}_t \in dy \mid \overleftarrow{\mathbf{U}}_0 = x\right)$, **time-reversal** implies

$$\pi_{\text{data}} \stackrel{\mathcal{L}}{=} p_T Q_T.$$

- ▶ p_T is not directly accessible. But for large T , the process forgets its initialization, $\overrightarrow{\mathbf{U}}_t = (\overrightarrow{X}_t, \overrightarrow{V}_t)^\top \in \mathbb{R}^{2d}$ as

$$\overrightarrow{\mathbf{U}}_t = e^{tA} \overrightarrow{\mathbf{U}}_0 + \int_0^t e^{(t-s)A} \Sigma dB_s \quad (2)$$

and converges to $\pi_\infty \sim \mathcal{N}(\mathbf{0}_{2d}, \Sigma_\infty)$.

$$p_T \approx \pi_\infty$$

⚠ **Mixing-time error:** $\pi_{\text{data}} \approx \pi_\infty Q_T$

Sources of Error in CLD-SGMs II

- ▶ Score function $\nabla \log p_t$ is intractable but can be approximated by a deep neural network s_θ via score matching.

$$\|s_\theta(t, \mathbf{U}_t) - \nabla \log p_t(\mathbf{U}_t)\|_{L_2} \leq M$$

⚠ **Approximation error:** $\pi_{\text{data}} \approx \pi_\infty Q_T^\theta$

- ▶ Backward drift is **non-linear** and should be discretized into N finite steps (Euler–Maruyama or symplectic integrators).

⚠ **Discretization error:** $\pi_{\text{data}} \approx \pi_\infty Q_{T,N}^\theta := \hat{\pi}_{\infty,N}^\theta$

\mathcal{W}_2 Upper Bound

$$\begin{aligned}\mathcal{W}_2(\pi_{\text{data}}, \hat{\pi}_{\infty, N}^{\theta}) \leq & \underbrace{\mathcal{W}_2(\mathcal{L}(\bar{\mathbf{U}}_T), \mathcal{L}(\bar{\mathbf{U}}_N))}_{\text{Discretization}} + \underbrace{\mathcal{W}_2(\mathcal{L}(\bar{\mathbf{U}}_N), \mathcal{L}(\bar{\mathbf{U}}_{\infty, N}))}_{\text{Mixing time}} \\ & + \underbrace{\mathcal{W}_2(\mathcal{L}(\bar{\mathbf{U}}_{\infty, N}), \mathcal{L}(\bar{\mathbf{U}}_{\infty, N}^{\theta}))}_{\text{Score approximation}},\end{aligned}$$

where $T > 0$ denotes the diffusion time horizon and N the number of discretization steps.

- ⇒ Standard proofs that control these errors using the **strong log-concavity of p_t** fail in this setting, since noise is injected only into the velocity component, making the SDEs **hypoelliptic**.
- ⇒ Two solutions were developed to study this kinetic algorithm.

Solution 1: Long-term regularity of the renormalized score

Idea: Introduce a *renormalized* formulation of the backward process:

$$d\overleftarrow{\mathbf{U}}_t = \tilde{A} \overleftarrow{\mathbf{U}}_t dt + \Sigma^2 \nabla \log \tilde{p}_{T-t}(\overleftarrow{\mathbf{U}}_t) dt + \Sigma dB_t, \quad \tilde{p}_t := \frac{p_t}{p_\infty}.$$

Key properties:

1. \tilde{p}_t "quantifies" **deviation from equilibrium** p_∞ .
2. Its curvature $\nabla^2 \log \tilde{p}_t$ characterizes the **regularity of the score**, for all $t \in (0, T]$,

$$\|\nabla^2 \log \tilde{p}_t(\cdot)\| \leq C \left(1 + \frac{1}{\sqrt{t}}\right) e^{-2at} = \tilde{L}_t.$$

3. Recover a bound of the type, as for general SGMs

$$\mathcal{W}_2(\pi_{\text{data}}, \hat{\pi}_{\infty, N}^\theta) \leq e^{-T} c_1 + M c_2 + \sqrt{T/N} c_3.$$

Solution 2: Restoring ellipticity

Idea: Inject a small amount of noise into *all* coordinates:

$$\Sigma = \begin{pmatrix} \varepsilon & 0 \\ 0 & \sigma \end{pmatrix}, \quad \varepsilon > 0.$$

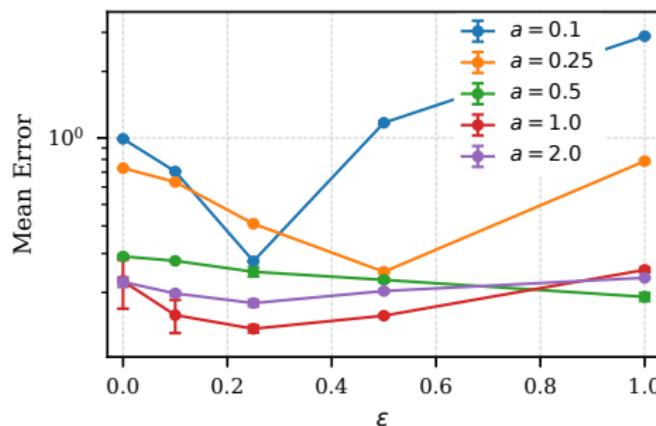
Consequences:

- ▶ **Uniform ellipticity:** (multi-dimensional O.U. structure).
- ▶ **More quantitative bounds:** standard log-concave tools apply.
- ▶ **In practice:** provides a new parameter ε to control the regularity of the sample paths.

Numerical Illustration

Empirical results (Funnel dataset, $d = 100$).

- ▶ Small ε often **improves** sliced- \mathcal{W}_2 vs. $\varepsilon = 0$ (CLD baseline).
- ▶ **Trade-off:** training becomes more expensive, since the network must learn full gradients.



Mean \mathcal{W}_2 over 5 runs; error bars represent \pm one standard deviation.