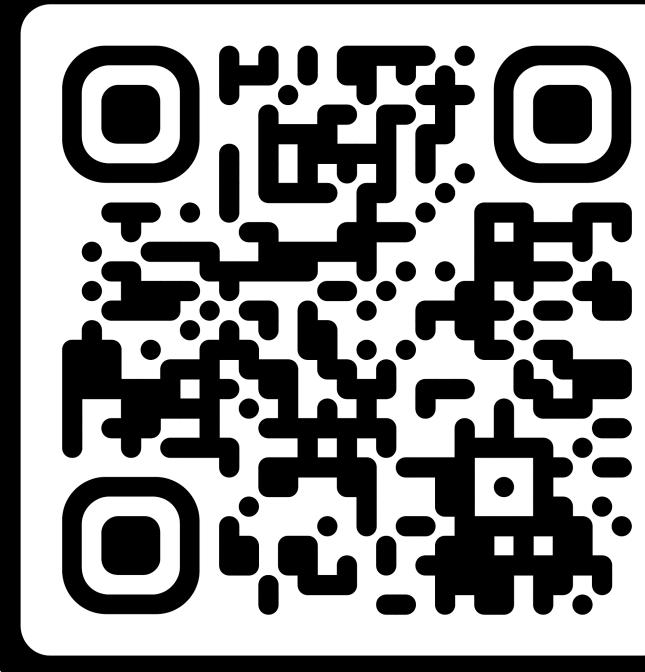


Stanislas Strasman¹, Sobhan Surendran^{1,2}, Claire Boyer³, Sylvain Le Corff¹, Vincent Lemaire¹, Antonio Ocello⁴
¹Sorbonne Université and Université Paris Cité, CNRS, LPSM, F-75005 Paris, France ²LOPF, Califrais' Machine Learning Lab, Paris, France

³LMO, Université Paris-Saclay, UMR CNRS 8628, Institut Universitaire de France, Orsay, France

⁴CREST, Groupe ENSAE-ENSAI, ENSAE Paris, Institut Polytechnique de Paris, 91120 Palaiseau, France


Introduction

Consider $\mathcal{D} = \{x_i\}_{i=1}^n$ with $x_i \in \mathbb{R}^d$ i.i.d. from an unknown distribution π_{data} .

Goal. Learn a generative mechanism whose output distribution $\hat{\pi}$ is close to π_{data} (e.g., in Wasserstein distance \mathcal{W}_2).

Score-based Generative Models (SGMs). Construct

- a *forward noising process* transporting π_{data} to a simple prior π_∞ ,
- a *backward denoising process* mapping noise samples back to data.

Classical SGMs. Starting from $\vec{X}_0 \sim \pi_{\text{data}}$, common forward processes include

$$\text{VP SDE: } d\vec{X}_t = -\vec{X}_t dt + \sqrt{2} dB_t,$$

$$\text{VE SDE: } d\vec{X}_t = \sqrt{2} dB_t,$$

$$\text{Flow matching: } \vec{X}_t = (1-t)\vec{X}_0 + tZ, \quad Z \sim \mathcal{N}(0, I_d) \perp \vec{X}_0, \quad t \in [0, 1].$$

Kinetic SGMs (this work) evolve in an extended position/velocity phase space.

Framework

Forward process. Kinetic phase-space dynamics for $\vec{U}_t = (\vec{X}_t, \vec{V}_t) \in \mathbb{R}^{2d}$:

$$d\vec{U}_t = A\vec{U}_t dt + \Sigma dB_t, \quad \vec{U}_0 \sim \pi_{\text{data}} \otimes \pi_v, \quad (1)$$

with

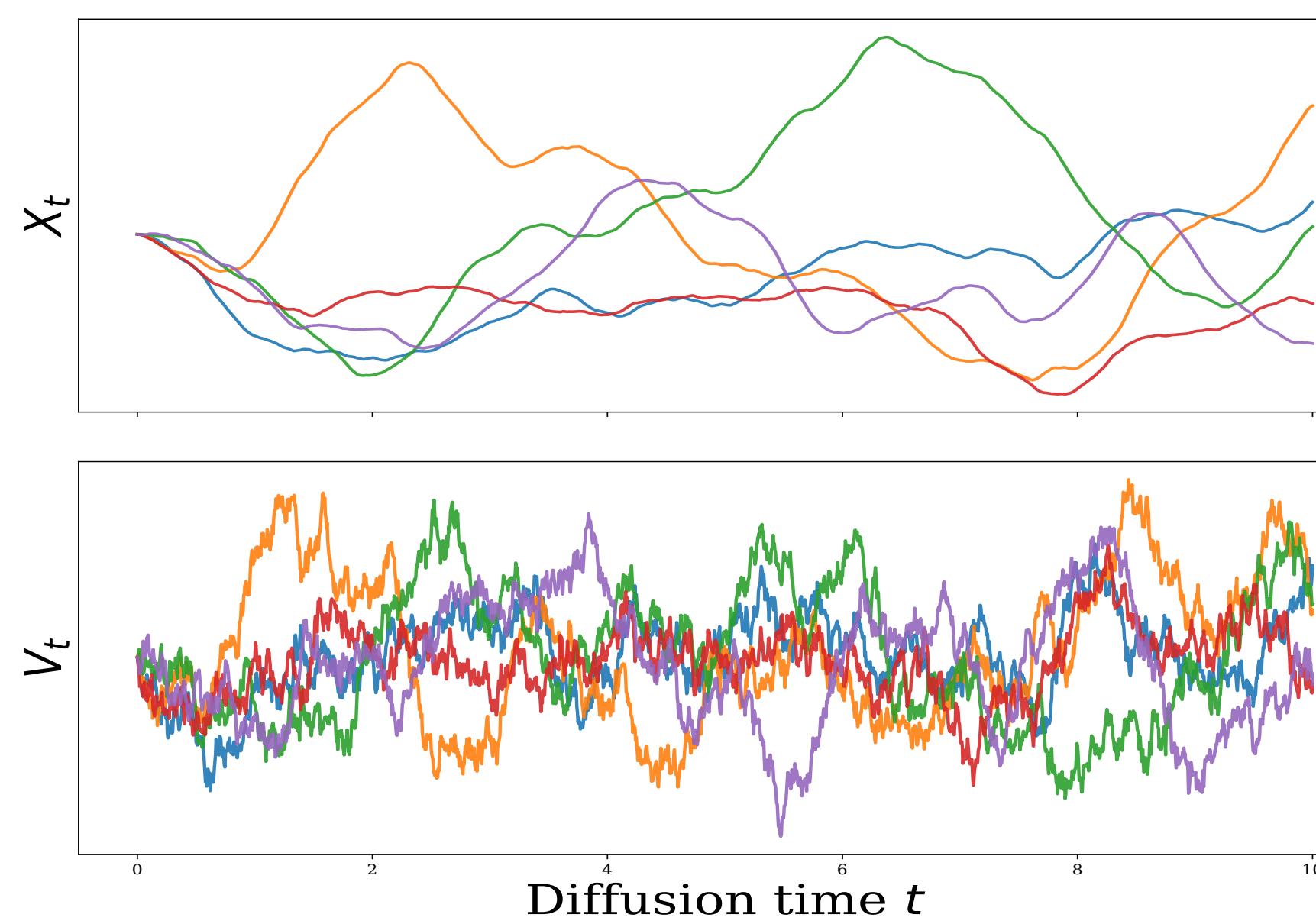
$$A = \begin{pmatrix} 0 & a^2 \\ -\mathbf{I}_d & -2a\mathbf{I}_d \end{pmatrix}, \quad \Sigma = \begin{pmatrix} 0 & 0 \\ 0 & \sigma\mathbf{I}_d \end{pmatrix}, \quad \pi_v = \mathcal{N}(0, v^2\mathbf{I}_d).$$

☞ *Hamiltonian-like coupling of (X, V) , with noise injected only in the velocity.*

Backward process. [1] $(\vec{U}_t)_{t \in [0, T]} \xrightarrow{\mathcal{L}} (\vec{U}_{T-t})_{t \in [0, T]}$ follows

$$d\vec{U}_t = -A\vec{U}_t dt + \Sigma^2 \nabla \log p_{T-t}(\vec{U}_t) dt + \Sigma dB_t, \quad \vec{U}_0 \sim p_T, \quad (2)$$

with p_t the p.d.f. of (1). Let Q_t be the semigroup of (2), so that $\pi_{\text{data}} = p_T Q_T$.



Prior work

- Empirical evidence that CLDs outperform standard SGMs in practice [2].
- KL convergence analyses of kinetic Langevin dynamics for the special case $a = 1$, $\sigma = 2$ [3, 4].
- **Gap:** no Wasserstein convergence guarantees are known for CLDs.

SGM-CLDs in Practice

☞ p_T is not accessible, but for large T , the process forgets its initialization.

$$p_T \approx \pi_\infty \sim \mathcal{N}(0, \Sigma_\infty).$$

■ **Mixing-time error:** $\pi_{\text{data}} \approx \pi_\infty Q_T$

☞ Score function $\nabla \log p_t$ is intractable but can be approximated by a deep neural network s_θ via score matching.

■ **Approximation error:** $\pi_{\text{data}} \approx \pi_\infty Q_T^\theta$

☞ Backward drift is **non-linear** and should be discretized into N finite steps.

■ **Discretization error:** $\pi_{\text{data}} \approx \pi_\infty Q_{T,N}^\theta := \hat{\pi}_{\infty,N}^\theta$

Convergence results for SGMs rely on controlling each of the sources of error:

$$\begin{aligned} \mathcal{W}_2(\pi_{\text{data}}, \hat{\pi}_{\infty,N}^\theta) &\leq \underbrace{\mathcal{W}_2(\mathcal{L}(\vec{U}_T), \mathcal{L}(\vec{U}_N))}_{\text{Discretization}} + \underbrace{\mathcal{W}_2(\mathcal{L}(\vec{U}_N), \mathcal{L}(\vec{U}_{\infty,N}))}_{\text{Mixing}} \\ &\quad + \underbrace{\mathcal{W}_2(\mathcal{L}(\vec{U}_{\infty,N}), \mathcal{L}(\vec{U}_{\infty,N}^\theta))}_{\text{Score approximation}}. \end{aligned}$$

⚠ **Overcoming Hypoellipticity.** For non-kinetic SGMs, these terms are controlled by establishing a **contraction property in the Euclidean norm** via coupling arguments under **strong log-concavity** of p_t [5]. This condition no longer suffices for CLD: the dynamics are **hypoelliptic** (noise only in velocity).

Solution 1: long-term Lipschitz regularity of the renormalized score

Let p_∞ be the invariant density of the forward CLD and $\tilde{p}_t := p_t/p_\infty$. The **renormalized backward dynamics** writes as

$$d\vec{U}_t = \tilde{A}\vec{U}_t dt + \Sigma^2 \nabla \log \tilde{p}_{T-t}(\vec{U}_t) dt + \Sigma dB_t,$$

where \tilde{A} is a negative definite matrix.

Lipschitz continuity of renormalized score (exponential decay). Under regularity assumptions on π_{data} , there exists $C > 0$ such that, for all $t \in (0, T]$:

$$\|\nabla^2 \log \tilde{p}_t\| \leq C \left(1 + \frac{1}{\sqrt{t}}\right) e^{-2at} =: \tilde{L}_t.$$

Norm contraction. \tilde{L}_t is integrable and the backward flow contracts in a weighted norm, there exists $\eta > 0$:

$$\|\vec{U}_t^x - \vec{U}_t^y\|_{\mathfrak{M}} \leq C e^{-\eta t} \|\vec{U}_0^x - \vec{U}_0^y\|_{\mathfrak{M}}.$$

Wasserstein Convergence Analysis of CLD

Theorem: Under mild regularity assumptions on π_{data} , there exist constants $c_1, c_2, c_3 > 0$ such that

$$\mathcal{W}_2(\pi_{\text{data}}, \hat{\pi}_{\infty,N}^\theta) \leq c_1 e^{-c_2 T} + c_2 M + c_3 \sqrt{T/N},$$

with

$$\sup_{k \in \{0, \dots, N-1\}} \|\nabla \log \tilde{p}_{T-t_k}(\vec{U}_{t_k}^\theta) - s_\theta(T-t_k, \vec{U}_{t_k}^\theta)\|_{L_2} \leq M.$$

Solution 2: restore ellipticity

Add a small amount of noise in the position coordinates:

$$\Sigma_\varepsilon = \begin{pmatrix} \varepsilon \mathbf{I}_d & 0 \\ 0 & \sigma \mathbf{I}_d \end{pmatrix}, \quad \varepsilon > 0.$$

Consequences.

► **Uniform ellipticity:** matrix Ornstein-Uhlenbeck process.

► **Standard analysis restored:** log-concave contraction in the Euclidean metric, enabling sharper quantitative bounds.

► **Practical effect:** ε controls sample-path smoothness.

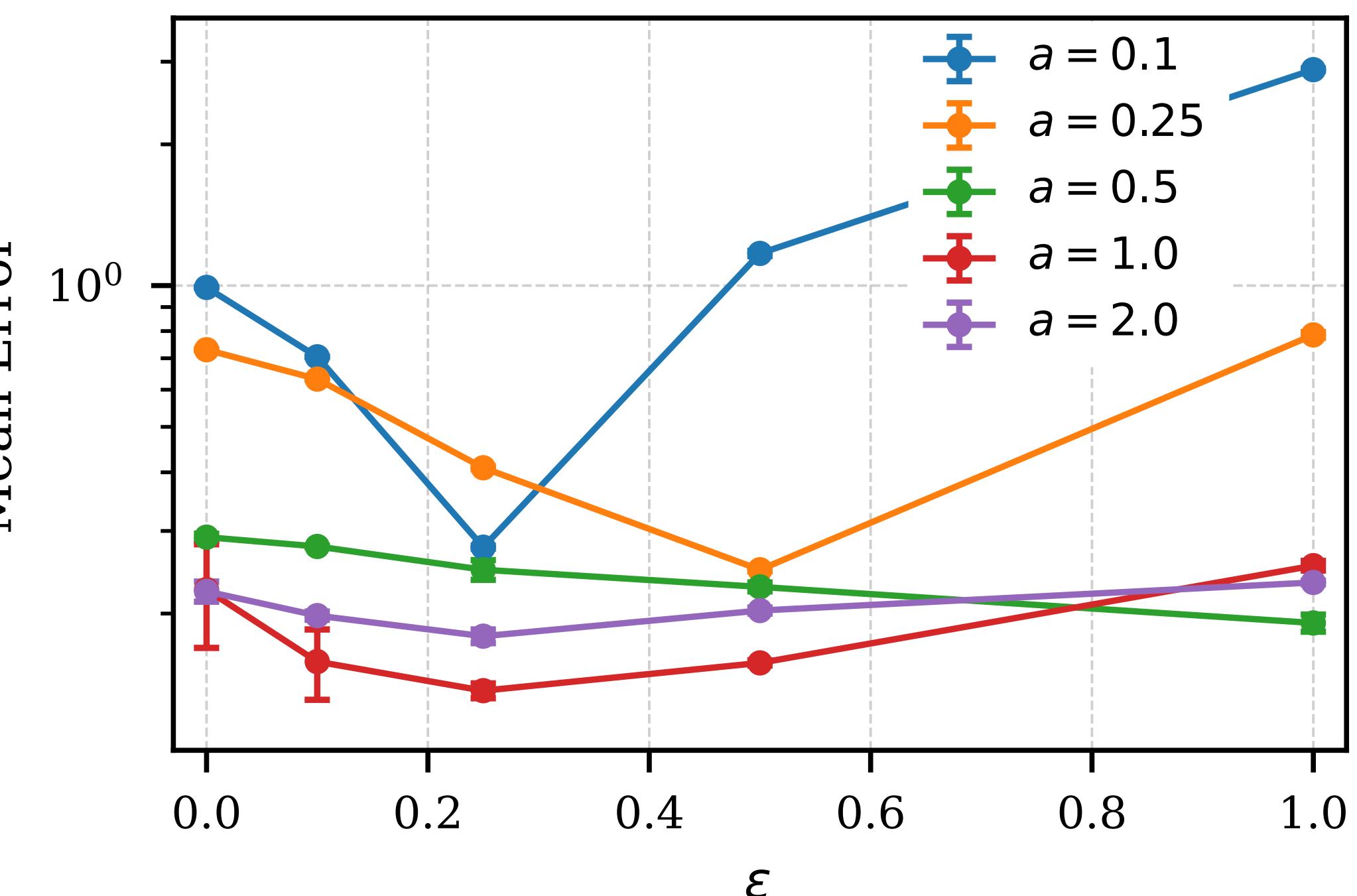


Figure: Mean sliced- \mathcal{W}_2 on the 100-dimensional **Funnel** distribution.

⇒ *Introducing a small regularization parameter ε improves generation quality.*

Additional remarks.

- Even with a small $\varepsilon > 0$, **structure-preserving integrators** can further improve performance.
- **Trade-off:** training becomes more expensive, since the network must learn full gradients $\nabla \log p_t(x, v)$ instead of velocity-only terms $\nabla_v \log p_t(v)$, effectively **doubling the dimension**.

References

- [1] Patrick Cattiaux et al. "Time reversal of diffusion processes under a finite entropy condition". In: *Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques* 59.4 (2023), pp. 1844–1881.
- [2] Tim Dockhorn, Arash Vahdat, and Karsten Kreis. "Score-Based Generative Modeling with Critically-Damped Langevin Diffusion". In: *International Conference on Learning Representations*. 2022.
- [3] Sitan Chen et al. "Sampling is as easy as learning the score: theory for diffusion models with minimal data assumptions". In: *International Conference on Learning Representations*. 2023.
- [4] Giovanni Conforti, Alain Durmus, and Marta Gentiloni Silveri. "KL convergence guarantees for score diffusion models under minimal data assumptions". In: *SIAM Journal on Mathematics of Data Science* 7.1 (2025), pp. 86–109.
- [5] Xuefeng Gao, Hoang M Nguyen, and Lingjiong Zhu. "Wasserstein convergence guarantees for a general class of score-based generative models". In: *Journal of Machine Learning Research* 26.43 (2025), pp. 1–54.