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Introduction

Consider D = {xi}n
i=1 with xi ∈ Rd i.i.d. from an unknown distribution πdata.

Goal. Learn a generative mechanism whose output distribution π̂ is close to πdata
(e.g., in Wasserstein distance W2).
Score-based Generative Models (SGMs). Construct

- a forward noising process transporting πdata to a simple prior π∞,
- a backward denoising process mapping noise samples back to data.

Classical SGMs. Starting from −→X 0 ∼ πdata, common forward processes include
VP SDE: d

−→
X t = −

−→
X t dt +

√
2 dBt,

VE SDE: d
−→
X t =

√
2 dBt,

Flow matching: −→X t = (1− t)
−→
X 0 + tZ, Z ∼ N (0, Id) ⊥

−→
X 0, t ∈ [0, 1].

Kinetic SGMs (this work) evolve in an extended position/velocity phase space.

Framework

Forward process. Kinetic phase-space dynamics for −→Ut = (
−→
X t,
−→
V t) ∈ R2d:

d−→Ut = A
−→Utdt + ΣdBt,

−→U0 ∼ πdata ⊗ πv, (1)
with

A =

 0 a2

−Id −2aId

 , Σ =

0 0
0 σId

 , πv = N (0, v2Id).

☞ Hamiltonian-like coupling of (X, V ), with noise injected only in the velocity.

Backward process. [1] (←−Ut)t∈[0,T ]
L= (−→UT−t)t∈[0,T ] follows

d←−Ut = −A
←−Ut dt + Σ2∇ log pT−t(

←−Ut) dt + Σ dBt,
←−U0 ∼ pT , (2)

with pt the p.d.f. of (1). Let Qt be the semigroup of (2), so that πdata = pTQT .
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Prior work

• Empirical evidence that CLDs outperform standard SGMs in practice [2].
•KL convergence analyses of kinetic Langevin dynamics for the special case a = 1,

σ = 2 [3, 4].
•Gap: no Wasserstein convergence guarantees are known for CLDs.

SGM-CLDs in Practice
☞ pT is not accessible, but for large T , the process forgets its initialization.

pT ≈ π∞ ∼ N (0, Σ∞) .

■ Mixing-time error: πdata ≈ π∞QT

☞ Score function ∇ log pt is intractable but can be approximated by a deep
neural network sθ via score matching.
■ Approximation error: πdata ≈ π∞Qθ

T

☞ Backward drift is non-linear and should be discretized into N finite steps.
■ Discretization error: πdata ≈ π∞Qθ

T,N := π̂θ
∞,N

Convergence results for SGMs rely on controlling each of the sources of error:

W2(πdata, π̂θ
∞,N) ≤ W2(L(←−UT ),L(ŪN))︸ ︷︷ ︸

Discretization

+ W2(L(ŪN),L(Ū∞,N))︸ ︷︷ ︸
Mixing

+ W2(L(Ū∞,N),L(Ūθ
∞,N))︸ ︷︷ ︸

Score approximation

.

� Overcoming Hypoellipticity. For non-kinetic SGMs, these terms are
controlled by establishing a contraction property in the Euclidean norm via
coupling arguments under strong log-concavity of pt [5]. This condition no
longer suffices for CLD: the dynamics are hypoelliptic (noise only in velocity).

Solution 1: long-term Lipschitz regularity of the
renormalized score

Let p∞ be the invariant density of the forward CLD and p̃t := pt/p∞. The renor-
malized backward dynamics writes as

d←−Ut = Ã
←−Utdt + Σ2∇ log p̃T−t(

←−Ut)dt + ΣdBt ,

where Ã is a negative definite matrix.
Lipschitz continuity of renormalized score (exponential decay). Under
regularity assumptions on πdata, there exists C > 0 such that, for all t ∈ (0, T ]:

∥∇2 log p̃t∥ ≤ C
(

1 + 1√
t

)
e−2at =: L̃t .

Norm contraction. L̃t is integrable and the backward flow contracts in a weighted
norm, there exists η > 0:

∥←−Ux
t −
←−Uy

t∥M ≤ Ce−ηt∥←−Ux
0 −
←−Uy

0∥M.

Wasserstein Convergence Analysis of CLD

Theorem: Under mild regularity assumptions on πdata, there exist constants
c1, c2, c3 > 0 such that

W2(πdata, π̂θ
∞,N) ≤ c1e−c2T + c2M + c3

√
T/N,

with
sup

k∈{0,..,N−1}

∥∥∇ log p̃T−tk

(
Ūθ

tk

)
− sθ

(
T − tk, Ūθ

tk

)∥∥
L2
≤M .

Solution 2: restore ellipticity
Add a small amount of noise in the position coordinates:

Σε =

εId 0
0 σId

 , ε > 0.

Consequences.
▶Uniform ellipticity: matrix Ornstein-Uhlenbeck process.
▶Standard analysis restored: log-concave contraction in the Euclidean metric,

enabling sharper quantitative bounds.
▶Practical effect: ε controls sample-path smoothness.
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Figure: Mean sliced-W2 on the 100-dimensional Funnel distribution.

⇒ Introducing a small regularization parameter ε improves generation quality.

Additional remarks.
• Even with a small ε > 0, structure-preserving integrators can further im-

prove performance.
•Trade-off: training becomes more expensive, since the network must learn full

gradients ∇ log pt(x, v) instead of velocity-only terms ∇v log pt(v), effectively
doubling the dimension.
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