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Introduction

Consider D = {x;}!, with x; € R i.i.d. from an unknown distribution 7.
Goal. Learn a generative mechanism whose output distribution 7 is close to mgat,
(e.g., in Wasserstein distance W,).

Score-based Generative Models (SGMs). Construct

- a forward noising process transporting ., to a simple prior 7,

- a backward denoising process mapping noise samples back to data.

Classical SGMs. Starting from ?0 ~ Tdata, cOmMmon forward processes include
VP SDE: dX, = —X,dt + V2dB,,
VE SDE: dX, = v2dB,
Flow matching: X, = (1—) Xo+1Z, Z~N(0,1;) L X, t €[0,1]

Kinetic SGMs (this work) evolve in an extended position/velocity phase space.

Framework

Forward process. Kinetic phase-space dynamics for ﬁt — (?t, 775) c R%;

dﬁt — Aﬁtdt -+ ZdBt, ﬁo ~ Tldata X Ty, (].)

with
0 a’ 0 0

A= , 3 =

- Ty :N(O,UQICZ).
—1; —2al, 0 oly

= Hamiltonian-like coupling of (X, V'), with noise injected only in the velocity.

Backward process. [1] (%t)tqoﬂ £ (ﬁT—t)te[O,T] follows

d%t = —A%t dt + ZQV 10g pT—t(%t) dt + > C.Bt, %0 ~ DT, (2)
with p; the p.d.f. of (1). Let (; be the semigroup of (2), so that mg.ta = pr@7.
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Prior work

e Empirical evidence that CLDs outperform standard SGMs in practice [2].
e KL convergence analyses of kinetic Langevin dynamics for the special case a = 1,
o =23, 4]

e Gap: no Wasserstein convergence guarantees are known for CLDs.
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= prois not accessible, but for large T', the process forgets its initialization.
PT =~ T NN(())ZOO) '
B Mixing-time error: Ty, = TooQT

1 Score function V log p; is intractable but can be approximated by a deep
neural network sy via score matching.
B Approximation error: my, = WOOQ?T

1 Backward drift is non-linear and should be discretized into /V finite steps.

~0
B Discretization error: mg, ~ WOOQTN = oo N

Convergence results for SGMs rely on controlling each of the sources of error:

N) S WL(Ur), £(Uy)) + WaL(Ux), £(Uscy))

Discretization Mixing

+ Wz(ﬁ(ﬁoo,N)a L(U—go,N)) :

Score approximation

W (Wdataa

A Overcoming Hypoellipticity. For non-kinetic SGMs, these terms are
controlled by establishing a contraction property in the Euclidean norm via
coupling arguments under strong log-concavity of p; [5]. This condition no
longer suffices for CLD: the dynamics are hypoelliptic (noise only in velocity).

Solution 1: long-term Lipschitz regularity of the
renormalized score

Let po, be the invariant density of the forward CLD and p; := p;/ps. The renor-
malized backward dynamics writes as

AU, = AU, dt + 2V log jr_(U)dt + XdB; |
where A is a negative definite matrix.

Lipschitz continuity of renormalized score (exponential decay). Under
regularity assumptions on mg.;., there exists C' > 0 such that, for all £ € (0,7:

1V 1og pe|| < C(l \}i)e_m = L.

Norm contraction. L, is integrable and the backward flow contracts in a weighted
norm, there exists n > 0:

|T7 — UYln < Ce T2 — TYam.

Wasserstein Convergence Analysis of CLD

Theorem: Under mild regularity assumptions on mq.:,, there exist constants
c1, Co, c3 > 0 such that

with

2LOPF, Califrais’ Machine Learning Lab, Paris, France

Solution 2: restore ellipticity

Add a small amount of noise in the position coordinates:

€Id 0
2ie = : e > 0.
0 O'Id

Consequences.

» Uniform ellipticity: matrix Ornstein-Uhlenbeck process.

» Standard analysis restored: log-concave contraction in the Euclidean metric,
enabling sharper quantitative bounds.

» Practical effect: = controls sample-path smoothness.
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Figure: Mean sliced-V, on the 100-dimensional Funnel distribution.

= Introducing a small regularization parameter € improves generation quality.

Additional remarks.
e Even with a small £ > 0, structure-preserving integrators can further im-
prove performance.

e Trade-off: training becomes more expensive, since the network must learn full

gradients V log pi(x, v) instead of velocity-only terms V, log p;(v), effectively
doubling the dimension.
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