

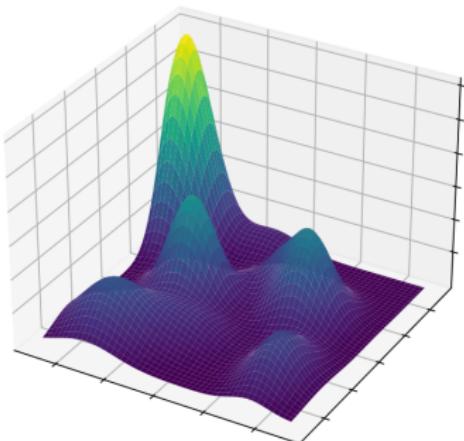
An Analysis of Noise Schedules in Score-Based Generative Modeling Algorithms

Stanislas Strasman, Antonio Ocello, Claire Boyer, Sylvain Le Corff,
Vincent Lemaire

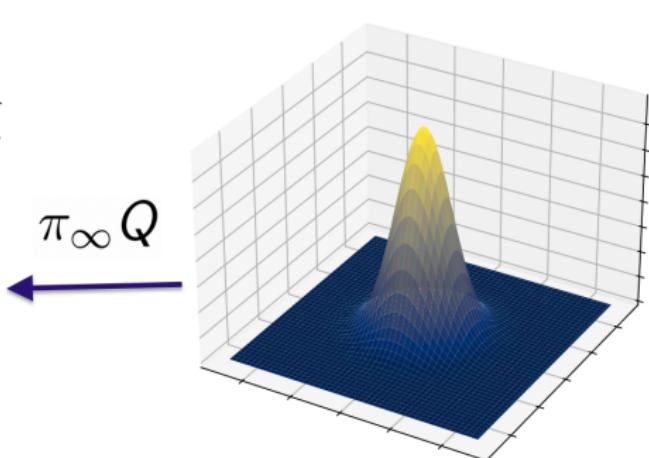
Generative modeling framework

- ▶ $\mathcal{D} = \{x_i\}_{i=1}^n \in (\mathbb{R}^d)^n$ a collection of i.i.d. samples from an **unknown** distribution π_{data} ¹.
- ▶ Goal: **generate new samples from** π_{data} (i.e. find a proba π_∞ and a simulable kernel Q such that $\pi_{\text{data}} \simeq \pi_\infty Q$).

Complex data distribution π_{data}



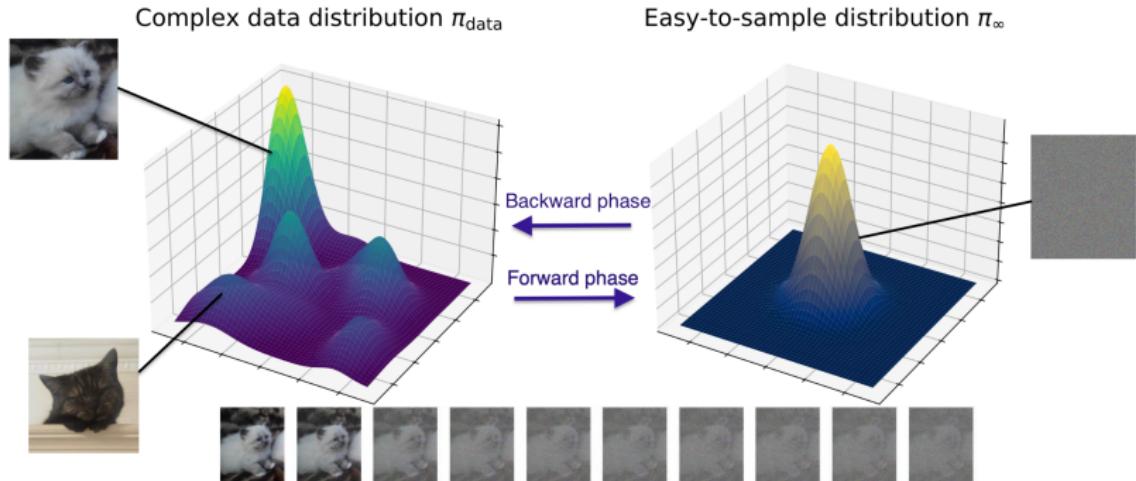
Easy-to-sample distribution π_∞



¹In this presentation, π will be used interchangeably to denote a probability distribution and its associated probability density function (p.d.f.).

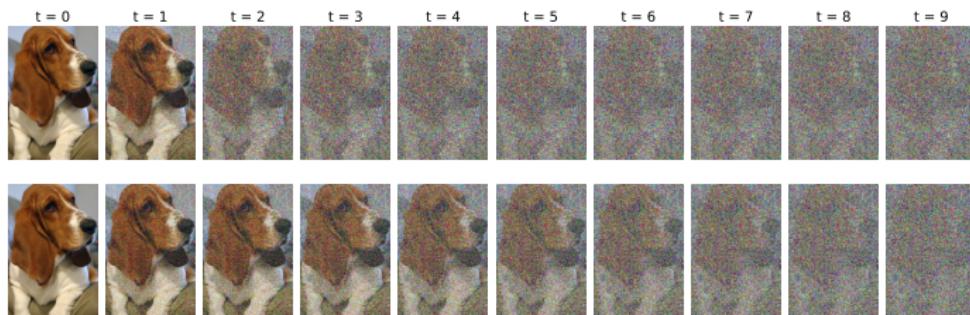
SGMs Philosophy

- ▶ “Creating noise from data is easy; creating data from noise is generative modeling.” (Song et al., 2021)



What is the appropriate amount of noise ?

- ▶ The noising/denoising process is at the core of SGMs.
- ▶ SGMs require to **hand-design** the intensity and the form of the noising procedure.
- ▶ **Little is known theoretically**, we only know **best practices** from experience and empirical studies ([Nichol and Dhariwal, 2021](#); [Guo et al., 2023](#); [Chen, 2023](#)).



Can we tell which is better?

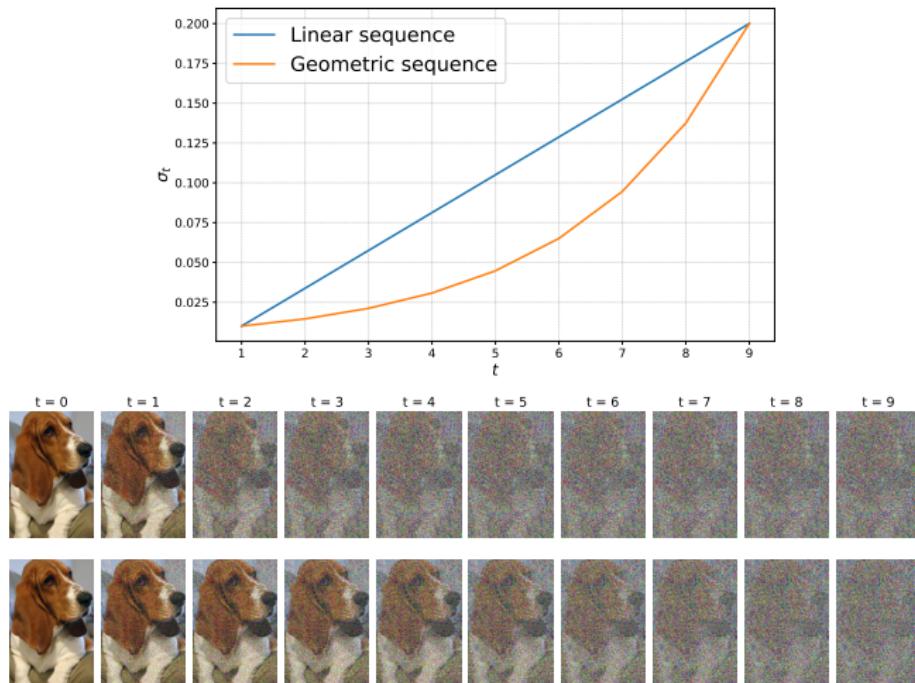


Figure: $X_t = X_0 + \sigma_t \cdot Z$, with $X_0 \sim p_{data}$ and $Z \sim \mathcal{N}(0, I_d)$. For a sequence of positive scalar σ_t for $t \in \{1, \dots, 8\}$ with $\sigma_1 = 0.01$ and $\sigma_8 = 0.2$.

Table of Contents

1. A simple example using canonical DDPM algorithm

- 1.1 Intuition and key insights from DDPM
- 1.2 Noise schedule effect: a numerical illustration

2. Theoretical analysis of the noise schedule

- 2.1 General convergence results for diffusion models
- 2.2 Inhomogeneous noise schedule

3. Upper bounds results

- 3.1 KL upperbound under minimal hypotheses
- 3.2 Refined 2-Wasserstein bound

Table of Contents

1. A simple example using canonical DDPM algorithm

- 1.1 Intuition and key insights from DDPM
- 1.2 Noise schedule effect: a numerical illustration

2. Theoretical analysis of the noise schedule

- 2.1 General convergence results for diffusion models
- 2.2 Inhomogeneous noise schedule

3. Upper bounds results

- 3.1 KL upperbound under minimal hypotheses
- 3.2 Refined 2-Wasserstein bound

Foundational insights from DDPM

- ▶ Denoising Diffusion Probabilistic Models (Sohl-Dickstein et al., 2015; Ho et al., 2020).
- ▶ Consider the **Markov chain**² $X_0, X_1, X_2 \dots \in \mathbb{R}^d$ starting at $X_0 \sim \pi_{\text{data}}$ and run $N \in \mathbb{N}$ times until the distribution of X_N is close to an *easy-to-sample* prior π_∞ :

$$\pi_N(x_N) = \int \pi(x_0, x_1, \dots, x_N) dx_0 \dots dx_{N-1} \approx \pi_\infty.$$

- ▶ By the **Markov property** and Bayes' formula,

$$\pi(x_0, x_1, \dots, x_N) = \pi_{\text{data}}(x_0) \prod_{k=1}^N \pi_{k|k-1}(x_k | x_{k-1}) \quad (\text{Forward})$$

$$= \pi_N(x_N) \prod_{k=1}^N \pi_{k-1|k}(x_{k-1} | x_k) \quad (\text{Backward})$$

²(admitting positive transition probabilities)

DDPM forward main intuitions

- ▶ **Forward phase:** hand-designed Gaussian transition kernels such that for $k \in \{1, 2, \dots, N\}$,

$$\pi_{k|k-1}(x_k | x_{k-1}) = \mathcal{N}(x_k; \sqrt{1 - \beta_k} x_{k-1}, \beta_k I_d),$$

with noise scale $0 < \beta_1 \leq \beta_2 \leq \dots \leq \beta_N < 1$.

- ▶ The log-density of the transition kernel is

$$\log \pi_{k|k-1}(x_k | x_{k-1}) \propto -\frac{1}{2\beta_k} \left\| x_k - \sqrt{1 - \beta_k} x_{k-1} \right\|^2.$$

- ▶ Assume that the β_k are **small enough** such that

$$\log \pi_k(\cdot) = \log \pi_{k-1}(\cdot) + \mathcal{O}(\beta_k),$$

and

$$\left\| x_k - \sqrt{1 - \beta_k} x_{k-1} \right\|^2 = \|x_k - x_{k-1}\|^2 + o(\beta_k).$$

DDPM backward steps remain Gaussian !

- ▶ Using Bayes' Rule,

$$\begin{aligned}\log \pi_{k-1|k}(x_{k-1}|x_k) &= \log \frac{\pi_{k|k-1}(x_k|x_{k-1}) \pi_{k-1}(x_{k-1})}{\pi_k(x_k)} \\ &\propto \log \pi_{k|k-1}(x_k|x_{k-1}) + \log \pi_{k-1}(x_{k-1}) \\ &\propto -\frac{1}{2\beta_k} \|x_k - x_{k-1}\|^2 + \log \pi_k(x_{k-1}) + \mathcal{O}(\beta_k).\end{aligned}$$

- ▶ Using Taylor Expansion,

$$\begin{aligned}\log \pi_k(x_{k-1}) &= \log \pi_k(x_k) + (x_{k-1} - x_k)^\top \nabla \log \pi_k(x_k) + \\ &\quad \mathcal{O}(\|x_{k-1} - x_k\|^2),\end{aligned}$$

with $\|x_{k-1} - x_k\|^2 \sim \mathcal{O}(\beta_k)$.

- ▶ Completing the square, and neglecting terms of order β_k , the **conditional backward is Gaussian**:

$$\log \pi_{k-1|k}(x_{k-1}|x_k) \propto -\frac{1}{2\beta_k} \left\| x_{k-1} - \underbrace{(x_k + \beta_k \nabla \log \pi_k(x_k))}_{\mu_k} \right\|^2.$$

DDPM reverse process and sampling

- ▶ When the β_k are small the **reverse conditional distributions** $\pi_{k-1|k}(x_{k-1} | x_k)$ are **approximately Gaussian**.
- ▶ This is a **score approximation problem** or **denoising problem**. In particular, in particular one might see the connection with Tweedie's formula (Robbins, 1956),

$$\mu_k = \mathbb{E}[x_{k-1} | x_k] = x_k + \beta_k \underbrace{\nabla \log \pi_k(x_k)}_{\text{score function}}.$$

- ▶ To estimate the score, one can train a **neural network**³

$$s_\theta(x_k, k) : \{1, 2, \dots, N\} \times \mathbb{R}^d \rightarrow \mathbb{R}^d$$

- ▶ To **sample from the reverse process**, sample from $\pi_\infty \approx \pi_N$ and apply **ancestral sampling** on the approximated backward transitions.

³(no details given at this point).

Table of Contents

1. A simple example using canonical DDPM algorithm

- 1.1 Intuition and key insights from DDPM
- 1.2 Noise schedule effect: a numerical illustration

2. Theoretical analysis of the noise schedule

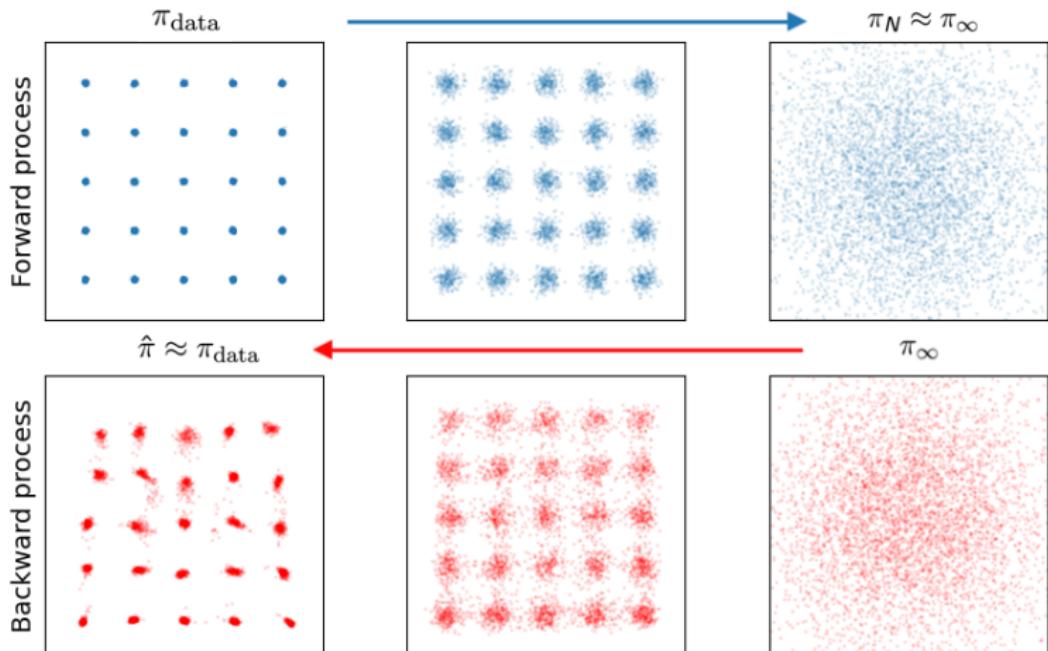
- 2.1 General convergence results for diffusion models
- 2.2 Inhomogeneous noise schedule

3. Upper bounds results

- 3.1 KL upperbound under minimal hypotheses
- 3.2 Refined 2-Wasserstein bound

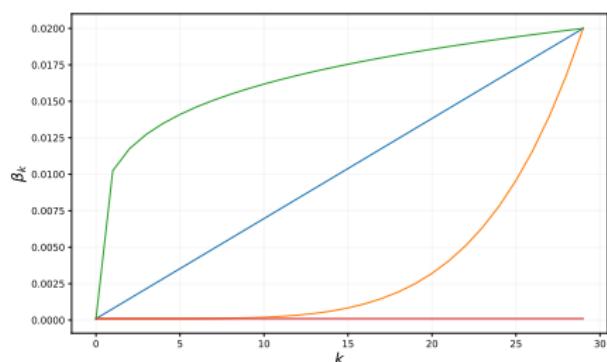
DDPM on Gaussian mixture model

- ▶ DDPM trained on a **2-dimensional mixture of 25 Gaussian** random variables.
- ▶ The resulting diffusion process is given below on a batch of **1000 samples**.

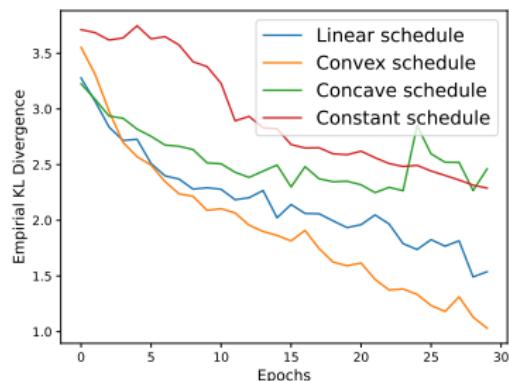


Impact of the noise schedule on the generation quality

- ▶ In **low dimension** the KL-divergence can be estimated **using histograms**, several schedules are tested.



Noise schedule



Empirical $\text{KL}(\pi_{\text{data}} \|\hat{\pi})$.

- ✓ The noise schedule does seem to impact the generation quality.

Table of Contents

1. A simple example using canonical DDPM algorithm

- 1.1 Intuition and key insights from DDPM
- 1.2 Noise schedule effect: a numerical illustration

2. Theoretical analysis of the noise schedule

- 2.1 General convergence results for diffusion models
- 2.2 Inhomogeneous noise schedule

3. Upper bounds results

- 3.1 KL upperbound under minimal hypotheses
- 3.2 Refined 2-Wasserstein bound

Leveraging the power of continuous-time analysis

- ▶ **Convergence results** for diffusion models are established in a **continuous setting** leveraging stochastic calculus tools.
- ▶ Indeed, let $0 \leq \Delta \leq 2\Delta \leq \dots \leq N\Delta = T$ with $\Delta = T/N$ and set for all $k \in [1, N]$, $\beta_k = 2\Delta$. When $N \rightarrow \infty$:

$$\begin{aligned} X_{k+\Delta} &= \sqrt{1 - 2\Delta} X_k + \sqrt{2\Delta} Z \\ &\approx_{\Delta \rightarrow 0} (1 - \Delta) X_k + \sqrt{2\Delta} Z, \end{aligned}$$

Hence, the **limiting process of DDPM** is, for $t \in [0, T]$,

$$dX_t = -X_t dt + \sqrt{2} dB_t.$$

SGMs through SDE : forward process

- ▶ For some diffusion time-horizon $T > 0$, the **forward process** $(\vec{X}_t)_{t \in [0, T]}$ is solution to an Ornstein-Uhlenbeck process:

$$d\vec{X}_t = -\vec{X}_t dt + \sqrt{2} dB_t, \quad X_0 \sim \pi_{\text{data}}.$$

- ▶ Let Q_t be the semi-group associated with \vec{X}_t and let $\pi_t = \pi_{\text{data}} Q_t$.
- ▶ In the time limit, the above transports π_{data} to a standard Gaussian distribution π_∞ by progressively adding (Gaussian) noise.

SGMs through SDE: more on the forward process

- ▶ As in DDPM the noising procedure implies a scaling down of the of the data points $d\vec{X}_t = -\vec{X}_t dt$,

SGMs through SDE: more on the forward process

- ▶ ... and a Gaussian noising process $d\vec{X}_t = \sqrt{2}dB_t$,

SGMs through SDE: more on the forward process

SGMs through SDE: backward process

- ▶ Under mild conditions the forward process admits a **time-reversed process** (Anderson, 1982; Cattiaux et al., 2021), i.e. in law,

$$\left(\overleftarrow{X}_t \right)_{t \in [0, T]} = \left(\overrightarrow{X}_{T-t} \right)_{t \in [0, T]}$$

with,

$$d\overleftarrow{X}_t = \left(\overleftarrow{X}_t + \underbrace{2 \nabla \log \pi_{T-t}(\overleftarrow{X}_t)}_{\text{score function}} \right) dt + \sqrt{2} dB_t, \quad \overleftarrow{X}_0 \sim \pi_T.$$

- ▶ The score term will drive the backward equation in **regions of space of high probability**.
- ▶ This gives a natural way to construct a **backward process** and therefore a generative model as in DPPM.

A variety of time-homogeneous convergence results

- ▶ Using this framework a **variety of upper bounds** to the **distance between the data distribution and the generated distribution** $d(\pi_{\text{data}}, \hat{\pi})$ have been established for various metrics:
 - ▶ For the total variation distance: [De Bortoli et al. \(2021\)](#).
 - ▶ For the Kullback-Leibler divergence: [Conforti et al. \(2023\)](#); [Bortoli et al. \(2023\)](#); [Chen et al. \(2023\)](#); [Chen \(2023\)](#).
 - ▶ For the Wasserstein distance: [Lee et al. \(2022, 2023\)](#); [Bruno et al. \(2023\)](#); [Gao et al. \(2023\)](#).
- ▶ **Remark:** one can convert KL bounds into total variation bounds using Pinsker's inequality:

$$\|\pi_{\text{data}} - \hat{\pi}\|_{\text{TV}} \leq \sqrt{\frac{1}{2} \text{KL}(\pi_{\text{data}} \parallel \hat{\pi})}.$$

Table of Contents

1. A simple example using canonical DDPM algorithm

- 1.1 Intuition and key insights from DDPM
- 1.2 Noise schedule effect: a numerical illustration

2. Theoretical analysis of the noise schedule

- 2.1 General convergence results for diffusion models
- 2.2 Inhomogeneous noise schedule

3. Upper bounds results

- 3.1 KL upperbound under minimal hypotheses
- 3.2 Refined 2-Wasserstein bound

Adapted theoretical framework: time-inhomogeneous SDE

⚠ An homogeneous forward implies a specific noise schedule choice.

1. **Forward process** now depends on $\beta : [0, T] \mapsto \mathbb{R}_{>0}$,

$$d\vec{X}_t = -\frac{\beta(t)}{2\sigma^2} \vec{X}_t dt + \sqrt{\beta(t)} dB_t, \quad \vec{X}_0 \sim \pi_{\text{data}}.$$

2. **Backward process**,

$$\begin{aligned} d\overleftarrow{X}_t = & \left(\frac{\beta(T-t)}{2\sigma^2} \overleftarrow{X}_t + \underbrace{\beta(T-t) \nabla \log \pi_{T-t}(\overleftarrow{X}_t)}_{\text{score function}} \right) dt \\ & + \beta(T-t) dB_t, \quad \overleftarrow{X}_0 \sim \pi_T. \end{aligned}$$

💡 How to go from this result to a practically viable **generative algorithm**?

SGMs in Practice I: mixing time.

- We let Q_t be the semigroup of \overleftarrow{X}_t defined as

$$Q_t(x, dy) = \mathbb{P} \left(\overleftarrow{X}_t \in dy \mid \overleftarrow{X}_0 = x \right).$$

- Recall that **time-reversal holds when $\overleftarrow{X}_0 \sim \pi_T$** , i.e.

$$\pi_{\text{data}} = \pi_T Q_T.$$

- But π_t depends on π_{data} :

$$\pi_t(x_t) = \int_{\mathbb{R}^d} \underbrace{\pi_t(x_t | x_0)}_{\text{p.d.f. of } \overrightarrow{X}_t | X_0} \pi_{\text{data}}(x_0) dx_0.$$

- In practice, we want a specified and easy-to-sample probability π_∞ to initialize the generative model.

SGMs in Practice I: mixing time.

- ▶ **Idea:** leverage the ergodicity of the O–U kernel.
- ▶ **Forward process** admits time marginal with $Z \sim \mathcal{N}(0, I_d)$ and $Z \perp X_0$:

$$\vec{X}_t = m_t X_0 + \sigma_t Z,$$

where:

$$m_t = \exp \left\{ - \int_0^t \frac{\beta(s)}{2\sigma^2} ds \right\}, \quad \sigma_t^2 = \sigma^2 (1 - m_t^2).$$

- ▶ For T large,

$$\pi_T \approx \pi_\infty \sim \mathcal{N}(0, \sigma^2 I_d).$$

⚠ Mixing Time Error: $\pi_{\text{data}} \simeq \pi_\infty Q_T$

SGMs in practice II: learn the score function

- ▶ Recall that the backward process depends on the score function $\nabla \log \pi_t(x)$.
- ▶ We train a **deep neural network** $s_\theta : [0, T] \times \mathbb{R}^d \mapsto \mathbb{R}^d$ to minimize:

$$\mathcal{L}_{\text{explicit}}(\theta) = \mathbb{E} \left[\left\| s_\theta \left(\tau, \vec{X}_\tau \right) - \nabla \log \pi_\tau \left(\vec{X}_\tau \right) \right\|^2 \right],$$

with $\tau \sim \mathcal{U}(0, T)$ independent of the forward process $(\vec{X}_t)_{t \geq 0}$.

- ▶ But $\pi_\tau(x)$ is **unknown** !

SGMs in practice II: learn the score function

- ▶ **Idea:** its **conditional version** shares the same optimum (Hyvärinen and Dayan, 2005; Vincent, 2011):

$$\mathcal{L}_{\text{score}}(\theta) = \mathbb{E} \left[\| s_\theta(\tau, \vec{X}_\tau) - \nabla \log \pi_\tau(\vec{X}_\tau | X_0) \|^2 \right].$$

- ▶ The conditional score is explicit :

$$\nabla \log \pi_\tau(\vec{X}_\tau | X_0) = \frac{m_\tau X_0 - \vec{X}_\tau}{\sigma_\tau^2} = -\frac{Z}{\sigma_\tau}$$

- ▶ Score matching Neural Networks writes as,

$$\mathcal{L}_{\text{score}}(\theta) = \mathbb{E} \left[\left\| s_\theta(\tau, \vec{X}_\tau) + \frac{Z}{\sigma_\tau} \right\|^2 \right].$$

- ⚠ **Approximation error:** $\pi_{\text{data}} \approx \pi_\infty Q_T^\theta$

SGMs in practice III: simulate from the backward kernel

- ▶ Contrary to the forward process the backward is **non-linear**.
- ▶ **?** **Idea:** **discretize** $[0, T]$ by N points with $t_k = kh$ and $h = T/N$, we let $t = t_k$ if $kh \leq t \leq (k+1)h$.
- ▶ Consider the **Exponential Integrator scheme**:

$$\begin{aligned} d\overleftarrow{X}_{t,N}^\theta &= \left(\frac{\beta(T-t)}{2\sigma^2} \overleftarrow{X}_{t,N}^\theta + \beta(T-t)s_\theta(T-t_k \overleftarrow{X}_{t_k,N}^\theta) \right) dt \\ &\quad + \beta(T-t) dB_t, \quad \overleftarrow{X}_0 \sim \pi_\infty. \end{aligned}$$

⚠ Discretization error: $\pi_{\text{data}} \approx \pi_\infty Q_{T,N}^\theta := \hat{\pi}_{\infty,N}^{(\beta,\theta)}$

Table of Contents

1. A simple example using canonical DDPM algorithm

- 1.1 Intuition and key insights from DDPM
- 1.2 Noise schedule effect: a numerical illustration

2. Theoretical analysis of the noise schedule

- 2.1 General convergence results for diffusion models
- 2.2 Inhomogeneous noise schedule

3. Upper bounds results

- 3.1 KL upperbound under minimal hypotheses
- 3.2 Refined 2-Wasserstein bound

KL upper bound with minimal hypotheses

Theorem (S. et al 2024)

Hyp: (i) β is continuous, positive, \nearrow , with $\int_0^\infty \beta(t)dt = \infty$

(ii) Novikov's condition on the difference between the actual and estimated score functions.

(iii) $\mathcal{I}(\pi_{\text{data}}|\pi_\infty) < \infty$. Then,

$$\text{KL} \left(\pi_{\text{data}} \parallel \widehat{\pi}_{\infty, N}^{(\beta, \theta)} \right) \leq \underbrace{\text{KL} (\pi_{\text{data}} \parallel \pi_\infty) \exp \left\{ - \frac{1}{\sigma^2} \int_0^T \beta(s) ds \right\}}_{\text{Mixing time}}$$
$$+ \underbrace{\sum_{k=0}^{N-1} \mathcal{E}_{\theta, k}^{\beta} \int_{T-t_{k+1}}^{T-t_k} \beta(t) dt}_{\text{Approx. error}} + \underbrace{2h\beta(T)\mathcal{I}(\pi_{\text{data}}|\pi_\infty)}_{\text{Discr. error}}.$$

with $\mathcal{E}_{\theta, k}^{\beta} = \mathbb{E} \left[\left\| \nabla \log \pi_{T-t_k} \left(\vec{X}_{T-t_k} \right) - s_\theta \left(T-t_k, \vec{X}_{T-t_k} \right) \right\|^2 \right]$.

Sketch of proof

- ▶ Time reversal, data processing inequality and Girsanov theorem,

$$\begin{aligned} \text{KL} \left(\pi_{\text{data}} \middle\| \pi_{\infty} Q_{T, \textcolor{red}{N}}^{\theta} \right) &= \text{KL} \left(\pi_T Q_T \middle\| \pi_{\infty} Q_{T, \textcolor{red}{N}}^{\theta} \right) \\ &\leq \text{KL} (\pi_T \| \pi_{\infty}) + \frac{1}{2} \int_0^T \mathbb{E} \left[\left\| \beta(t) \left(\nabla \log \pi_t (\tau_t, \bar{X}_t) - s_{\theta}(\tau_k, \bar{X}_{t_k}) \right) \right\|^2 \right] dt \\ &\leq \underbrace{\text{KL} (\pi_T \| \pi_{\infty})}_{E_1(\beta)} + \underbrace{\frac{1}{2} \sum_{k=0}^{N-1} \int_{t_k}^{t_{k+1}} \mathbb{E} \left[\left\| \beta(t) \left(\nabla \log \pi_{\tau_k} (\tau_k, \bar{X}_{\tau_k}) - s_{\theta}(\tau_k, \bar{X}_{t_k}) \right) \right\|^2 \right] dt}_{E_2(\beta, \theta)} \\ &\quad + \underbrace{\frac{1}{2} \sum_{k=0}^{N-1} \int_{t_k}^{t_{k+1}} \mathbb{E} \left[\left\| \beta(t) \left(\nabla \log \pi_{\tau_t} (\tau_t, \bar{X}_t) - \nabla \log \pi_{\tau_k} (\tau_k, \bar{X}_{\tau_k}) \right) \right\|^2 \right] dt}_{E_3(\beta)}. \end{aligned}$$

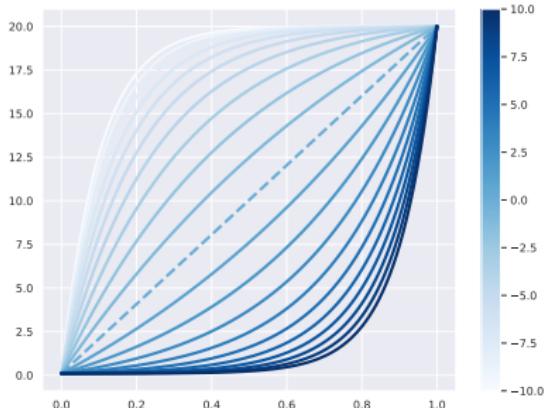
with $\tau_t = T - t$ and $\pi_k = T - t_k$.

Sketch of proof

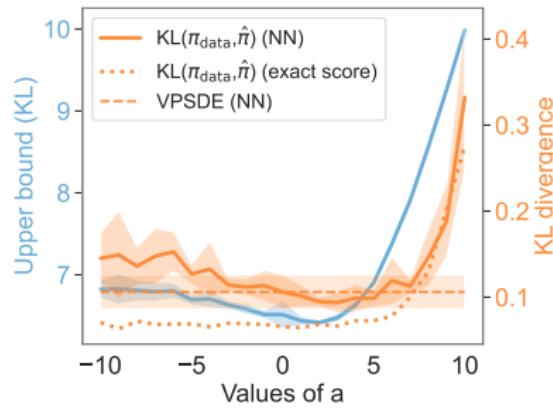
- ▶ $E_1(\beta)$ (mixing time error) represents the convergence of the forward process to its stationary distribution π_∞ . The rate is given by **Log-Sobolev inequalities**.
- ▶ $E_2(\beta, \theta)$ (approximation error) is the quality of the learning process (L_2 -error assumed to be finite, i.e. $\mathcal{E}_{\theta, k}^{\beta} \leq \infty$) at every discretization step.
- ▶ $E_3(\beta)$ (discretization error) arises from discretizing a continuous-time process into finite steps. Follows from summing up errors between discretization steps and using moments bounds on $\mathbb{E} \left[\left\| \nabla \log \pi_t \left(\overleftarrow{X}_t \right) \right\|^2 \right]$ (using time-reversal).

Numerical analysis I

- The effect of $\beta(\cdot)$ is rather complicated to be studied analytically but numerical experiments are possible.



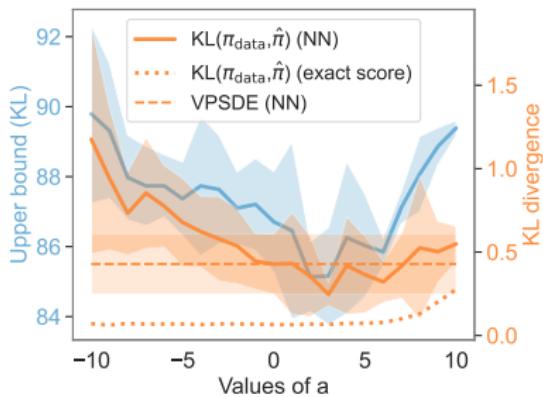
Noise schedules β_a



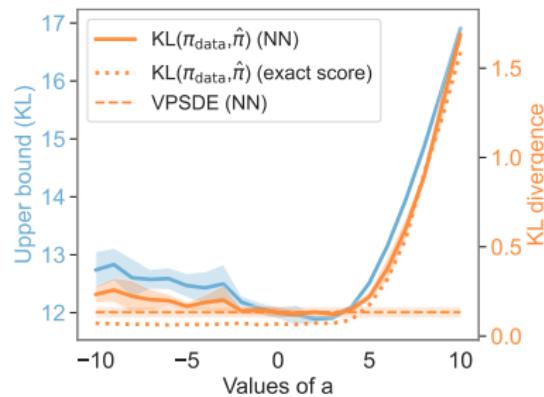
Isotropic Gaussian $\mathcal{N}(\mathbf{1}_d, 0.5\mathbf{I}_d)$

Figure: Comparison of the empirical KL divergence (mean \pm std over 10 runs) between π_{data} and $\hat{\pi}_{\infty, N}^{(\beta_a, \theta)}$ (orange) and the upper bound (blue) across parameter a for noise schedule β_a , $d = 50$.

- ✓ the noise schedule has an impact on the generation quality (rather expected).
- ✓ the upper bound captures this effect (maybe less expected).
- ✓ results are in line with heuristics.



Anisotropic $\mathcal{N}(\mathbf{1}_d, \Sigma^{(\text{heterosc})})^4$



Correlated $\mathcal{N}(\mathbf{1}_d, \Sigma^{(\text{corr})})^5$

⁴ $\Sigma^{(\text{heterosc})}$ is diag. and $\Sigma_{jj}^{(\text{heterosc})} = 1$ for $1 \leq j \leq 5$, and $\Sigma_{jj}^{(\text{heterosc})} = 0.01$ otherwise.

⁵ $\Sigma^{(\text{corr})}$ is diag. 1 and $\Sigma_{jj'}^{(\text{corr})} = 1/\sqrt{|j - j'|}$ for $1 \leq j \neq j' \leq d$.

Table of Contents

1. A simple example using canonical DDPM algorithm

- 1.1 Intuition and key insights from DDPM
- 1.2 Noise schedule effect: a numerical illustration

2. Theoretical analysis of the noise schedule

- 2.1 General convergence results for diffusion models
- 2.2 Inhomogeneous noise schedule

3. Upper bounds results

- 3.1 KL upperbound under minimal hypotheses
- 3.2 Refined 2-Wasserstein bound

Refined Wasserstein bound

Theorem (S. et al 2024)

Hyp: (i) π_t is C_t -strongly log-concave for $t \in [0, T]$

(ii) $\nabla \log \pi_t$ is L_t -smooth for $t \in [0, T]$

(iii) there exists M such that

$$\sup_{k \in 0, \dots, N-1} \sup_{t_k \leq t \leq t_{k+1}} \|\nabla \log \pi_t - \nabla \log \pi_{t_k}\|_{L_2} \leq Mh(1 + |x|)$$

Then,

$$\begin{aligned} \mathcal{W}_2 \left(\pi_{\text{data}}, \widehat{\pi}_{\infty, N}^{(\beta, \theta)} \right) &\leq \mathcal{W}_2 \left(\pi_{\text{data}}, \pi_{\infty} \right) \underbrace{\exp \left(- \int_0^T \frac{\beta(t)}{\sigma^2} (1 + C_t \sigma^2) dt \right)}_{\text{Mixing Time}} \\ &+ \sum_{k=0}^{N-1} \left(\int_{t_k}^{t_{k+1}} \bar{L}_t \bar{\beta}(t) dt \right) \left(\frac{\sqrt{2h\beta(T)}}{\sigma} + \frac{h\beta(T)}{2\sigma^2} + \int_{t_k}^{t_{k+1}} 2\bar{L}_t \bar{\beta}(t) dt \right) B \\ &+ \mathcal{E}^{\beta} T \beta(T) + MhT \beta(T) (1 + 2B) \end{aligned}$$

with $B = (\mathbb{E}[\|X_0\|^2] + \sigma^2 d)^{1/2}$, $\bar{L}_t = L_{T-t}$, $\bar{\beta}(t) = \beta(T-t)$, and

$$\mathcal{E}^{\beta} = \sup_{k \in \{0, \dots, N-1\}} \left\| \nabla \log \pi_{T-t_k} (\bar{X}_{t_k}^{\theta}) - s_{\theta}(T-t_k, \bar{X}_{t_k}^{\theta}) \right\|_{L_2}.$$

Corollary

If $\nabla \log \pi_{\text{data}}$ is L_0 -Lipschitz and $\log \pi_{\text{data}}$ est C_0 -strongly concave with $C_0 > 1/\sigma^2$, then

$$\begin{aligned} \mathcal{W}_2\left(\pi_{\text{data}}, \widehat{\pi}_{\infty, N}^{(\beta, \theta)}\right) &\leq \mathcal{W}_2\left(\pi_{\text{data}}, \pi_{\infty}\right) \exp\left(-\int_0^T \frac{\beta(t)}{\sigma^2} (1 + C'_t \sigma^2) dt\right) \\ &+ \sqrt{h} L_0 \beta(T) T \frac{\sqrt{2\beta(T)}}{\sigma} \\ &+ h \beta(T) T \left(L_0 \left(\frac{1}{2\sigma^2} + 2L_0 \right) \beta(T) B + M(1 + 2B) \right) + \varepsilon T \beta(T). \end{aligned}$$

with

$$\begin{aligned} C'_t &= \frac{1}{m_t^2/C_0 + \sigma^2(1 - m_t^2)} - \frac{1}{\sigma^2}, \\ m_t &= \exp\left(-\frac{1}{2\sigma^2} \int_0^t \beta(s) ds\right). \end{aligned}$$

Sketch of Proof

$$\mathcal{W}_2 \left(\pi_{\text{data}}, \hat{\pi}_{\infty, N}^{(\beta, \theta)} \right) \leq \mathcal{W}_2 \left(\pi_{\text{data}}, \pi_{\infty} Q_T \right) + \mathcal{W}_2 \left(\pi_{\infty} Q_T, \pi_{\infty} Q_T^{N, \theta} \right)$$

1. Mixing time error:

- ▶ Contractivity of the O.U. kernel for the forward process:

$$\mathcal{W}_2 \left(\pi_T, \pi_{\infty} \right) \leq \mathcal{W}_2 \left(\pi_{\text{data}}, \pi_{\infty} \right) \exp \left(- \int_0^T \frac{\beta(t)}{2\sigma^2} dt \right).$$

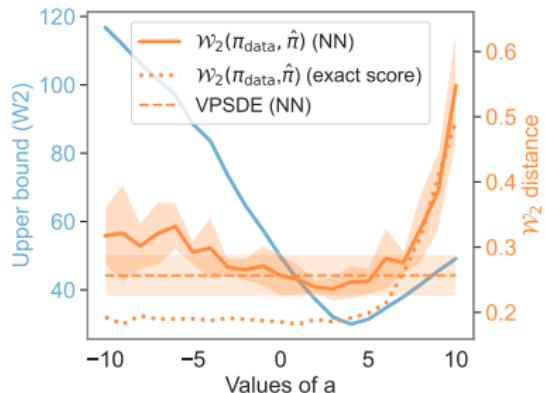
- ▶ Contractivity of the backward process under strong log-concavity of the score function:

$$\mathcal{W}_2 \left(\pi_T Q_T, \pi_{\infty} Q_T \right) \leq \mathcal{W}_2 \left(\pi_{\text{data}}, \pi_{\infty} \right) \exp \left(- \int_0^T \frac{\beta(t)}{\sigma^2} \left(1 + C_t \sigma^2 \right) dt \right).$$

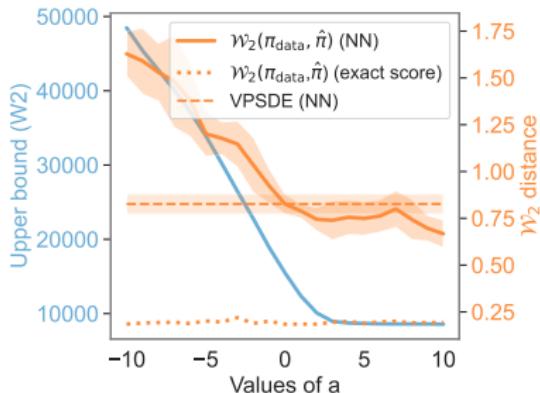
2. Approximation error and discretization error:

- ▶ Control the difference between the true backward process \bar{X}_t^{∞} and the discretized process \bar{X}_t^{θ} using the forward backward relationship.

Numerical analysis II



(a) Isotropic $\mathcal{N}(\mathbf{1}_d, 0.5\mathbf{I}_d)$



(b) Correlated $\mathcal{N}(\mathbf{1}_d, \Sigma^{(\text{corr})})$

Figure: Comparison of the empirical \mathcal{W}_2 distance (mean \pm std over 10 runs) between π_{data} and $\hat{\pi}_{\infty, N}^{(\beta, \theta)}$ (orange) and the related upper bounds (blue) across parameter a for noise schedule β_a , $d = 50$.

Calibration of σ^2 and Forward Regularization

Assuming the hypotheses of the corollary are verified on π_{data} , the choice of the stationary distribution $\mathcal{N}(0, \sigma^2 I_d)$ is **not obvious a priori**.

- ▶ If $\sigma^2 \uparrow$, then $L_t \downarrow$; we "**gain in regularity**" of the score function. Also,

$$\frac{1}{\sigma^2} \leq L_0 \implies \forall t \in [0, T], \quad L_t \leq L_0.$$

- ▶ If $\sigma^2 \uparrow$, then $C_t \downarrow$; we "**lose in concavity**" of the score function. Also,

$$\frac{1}{\sigma^2} \leq C_0 \implies \forall t \in [0, T], \quad C_t \leq C_0.$$

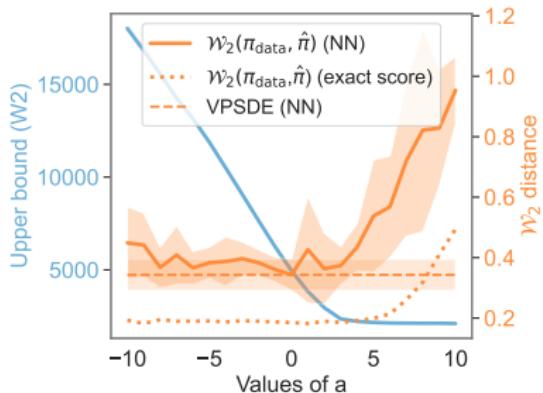
Data conditioning and Forward Regularization

- ▶ The **Gaussian experiment** reveals that **data conditioning** is **crucial**.
- ▶ If $\pi_{\text{data}} = \mathcal{N}(\mu, \Sigma)$ then:

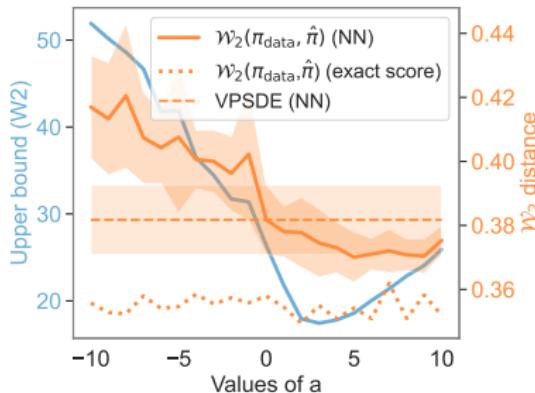
$$C_0 = \frac{1}{\lambda_{\max}(\Sigma)} \quad \text{and} \quad L_0 = \frac{1}{\lambda_{\min}(\Sigma)}.$$

- ▶ The smaller the ratio $L_0/C_0 = \lambda_{\max}/\lambda_{\min}$, the tighter the bound, regardless of the choice of σ^2 .

Illustration of the Impact of Conditioning



(a) Anisotropic $L_0/C_0 = 100$

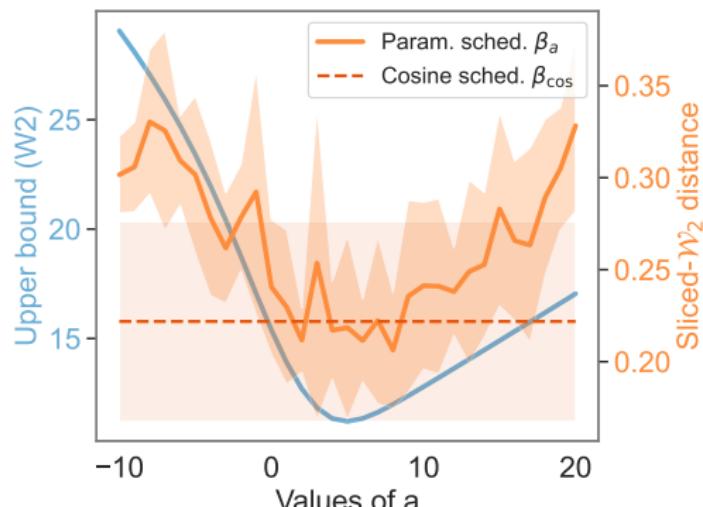


(b) Rescaled Anisotropic $L_0/C_0 = 1$

Figure: Comparison of empirical \mathcal{W}_2 distances (mean \pm std over 10 runs) between π_{data} and $\hat{\pi}_{\infty, N}^{(\beta, \theta)}$ (orange) and the upper bound (blue) for different values of parameter a in the *schedule* β_a , with $d = 50$.

Beyond the Gaussian setting: Funnel distribution

- ▶ $\pi_{\text{data}}(x) = \mathcal{N}(x_1; 0, 1) \prod_{j=2}^d \mathcal{N}(x_j; 0, \exp(x_1))$ in dimension $d = 50$.
- ▶ To evaluate the data generation we use the **2-Sliced Wasserstein** distance.



- ✓ The Wasserstein bound seems to hold for more general distributions.

Funnel distribution scatter plot

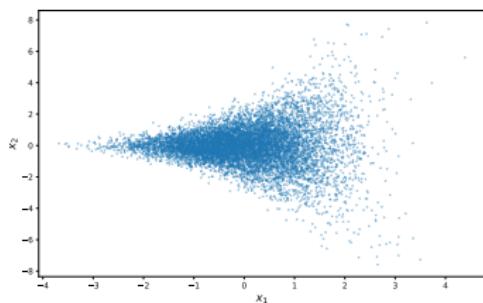
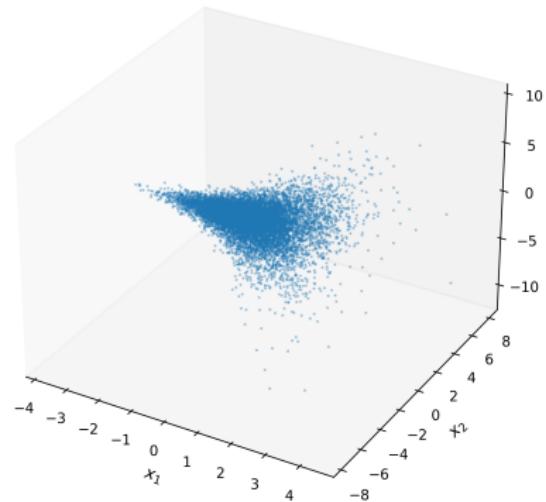
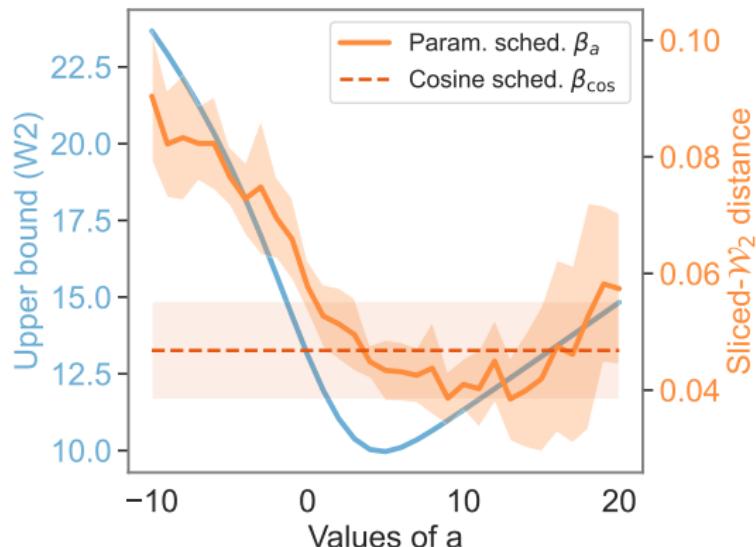


Figure: 10 000 samples from a funnel distribution in dimension 50. Plot of the 1st and 2nd dimension (left) and plot of the 1st, 2nd and 3rd dimension (right).

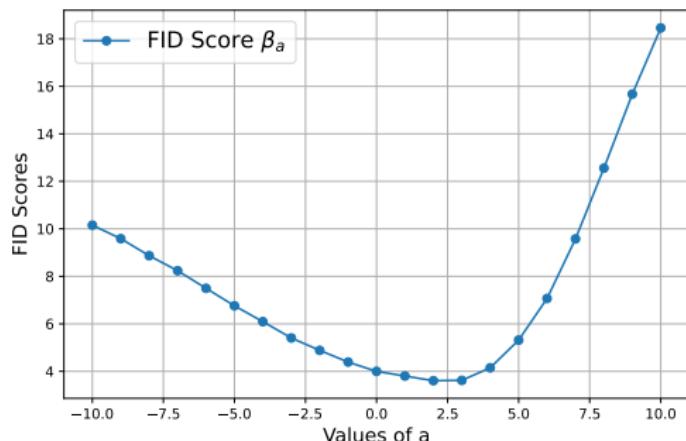
Beyond the Gaussian setting: back to GMM !

- ▶ $\pi_{\text{data}}(x) = \frac{1}{25} \sum_{(j,k) \in \{-2, \dots, 2\}^2} \varphi_{\mu_{jk}, \Sigma_d}(x)$ with $\varphi_{\mu_{jk}, \Sigma_d}$ denoting the probability density function of the Gaussian distribution in dimension $d = 50$.



Beyond the Gaussian setting: images ?

- ▶ Using **pretrained denoiser nets** from [Karras et al. \(2022\)](#) on CIFAR10 seems to validate the parametric family β_a and is in line with the optimal choices of a^* .



Final word and extension

- ▶ Some works consider **homogeneous forward** and **non-homogeneous discretization** steps $\Delta_k = t_{k+1} - t_k$, the Euler-Maruyama updates write:

$$X_{t_{k+1}} = X_{t_k} - X_{t_k} \Delta_k + \sqrt{2\Delta_k} Z_k.$$

- ▶ One can retrieve an **inhomogeneous SDE with constant discretization** steps setting $\Delta = T/N$ and

$$\beta(t_k) = \frac{2\Delta_k}{\Delta}.$$

- ▶ However, this approach will prescribe noise schedule choice only at the discretization points which is somehow less informative.
- ▶ The previous upper bounds assumed constant step size only for the sake of clarity.

Final word and extension

- ▶ We saw theoretically and empirically that the **noise schedule has an impact in the generation quality for SGMs**.
- ▶ This line of work paved the way for **noise schedule optimization** dependent on the data properties and on the other hyperparameters (discretization steps, stationary law, diffusion time).
- ▶ However the estimation of the bound remains **tricky in high dimension** due to error terms difficult to estimate.

References I

B. D. Anderson. Reverse-time diffusion equation models. *Stochastic Processes and their Applications*, 12(3):313–326, 1982.

V. D. Bortoli, J. Thornton, J. Heng, and A. Doucet. Diffusion schrödinger bridge with applications to score-based generative modeling, 2023.

S. Bruno, Y. Zhang, D.-Y. Lim, Ö. D. Akyildiz, and S. Sabanis. On diffusion-based generative models and their error bounds: The log-concave case with full convergence estimates. *arXiv preprint arXiv:2311.13584*, 2023.

P. Cattiaux, G. Conforti, I. Gentil, and C. Léonard. Time reversal of diffusion processes under a finite entropy condition. *arXiv preprint arXiv:2104.07708*, 2021.

S. Chen, S. Chewi, J. Li, Y. Li, A. Salim, and A. R. Zhang. Sampling is as easy as learning the score: theory for diffusion models with minimal data assumptions, 2023.

T. Chen. On the importance of noise scheduling for diffusion models. *arXiv preprint arXiv:2301.10972*, 2023.

G. Conforti, A. Durmus, and M. G. Silveri. Score diffusion models without early stopping: finite fisher information is all you need, 2023.

References II

- V. De Bortoli, J. Thornton, J. Heng, and A. Doucet. Diffusion schrödinger bridge with applications to score-based generative modeling. *Advances in Neural Information Processing Systems*, 34:17695–17709, 2021.
- X. Gao, H. M. Nguyen, and L. Zhu. Wasserstein convergence guarantees for a general class of score-based generative models, 2023.
- Q. Guo, S. Liu, Y. Yu, and P. Luo. Rethinking the noise schedule of diffusion-based generative models. *visible on Open Review*, 2023.
- J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. In *Advances in Neural Information Processing Systems*, 2020.
- A. Hyvärinen and P. Dayan. Estimation of non-normalized statistical models by score matching. *Journal of Machine Learning Research*, 6(4), 2005.
- T. Karras, M. Aittala, T. Aila, and S. Laine. Elucidating the design space of diffusion-based generative models, 2022.
- H. Lee, J. Lu, and Y. Tan. Convergence for score-based generative modeling with polynomial complexity. *Advances in Neural Information Processing Systems*, 35:22870–22882, 2022.

References III

H. Lee, J. Lu, and Y. Tan. Convergence of score-based generative modeling for general data distributions. In *International Conference on Algorithmic Learning Theory*, pages 946–985. PMLR, 2023.

A. Q. Nichol and P. Dhariwal. Improved denoising diffusion probabilistic models. In M. Meila and T. Zhang, editors, *Proceedings of the 38th International Conference on Machine Learning*, volume 139 of *Proceedings of Machine Learning Research*, pages 8162–8171. PMLR, 18–24 Jul 2021. URL <https://proceedings.mlr.press/v139/nichol21a.html>.

H. Robbins. An empirical bayes approach to statistics. In *Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics*, pages 157–163. University of California Press, 1956.

J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsupervised learning using nonequilibrium thermodynamics. In F. Bach and D. Blei, editors, *Proceedings of the 32nd International Conference on Machine Learning*, volume 37 of *Proceedings of Machine Learning Research*, pages 2256–2265, Lille, France, 07–09 Jul 2015. PMLR. URL <https://proceedings.mlr.press/v37/sohl-dickstein15.html>.

References IV

Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole.
Score-based generative modeling through stochastic differential equations.
International Conference on Learning Representations (ICLR), 2021.

P. Vincent. A connection between score matching and denoising autoencoders.
Neural Computation, 23(7):1661–1674, 2011. doi: 10.1162/NECO_a_00142.