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Generative modeling framework
▶ D = {xi}ni=1 ∈ (Rd)n a collection of i.i.d. samples from an

unknown distribution πdata
1.

▶ Goal: generate new samples from πdata (i.e. find a proba
π∞ and a simulable kernel Q such that πdata ≃ π∞Q).

1In this presentation, π will be used interchangeably to denote a probability
distribution and its associated probability density function (p.d.f.).
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SGMs Philosophy

▶ “Creating noise from data is easy; creating data from noise is
generative modeling.” (Song et al., 2021)
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What is the appropriate amount of noise ?

▶ The noising/denoising process is at the core of SGMs.

▶ SGMs require to hand-design the intensity and the form of the
noising procedure.

▶ Little is known theoretically, we only know best practices
from experience and empirical studies (Nichol and Dhariwal, 2021; Guo

et al., 2023; Chen, 2023).
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Can we tell which is better?
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Figure: Xt = X0 + σt · Z , with X0 ∼ pdata and Z ∼ N (0, Id ). For a sequence of
positive scalar σt for t ∈ {1, ..., 8} with σ1 = 0.01 and σ8 = 0.2.
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Foundational insights from DDPM

▶ Denoising Diffusion Probabilistic Models (Sohl-Dickstein et al., 2015;

Ho et al., 2020).
▶ Consider the Markov chain 2 X0,X1,X2... ∈ Rd starting at

X0 ∼ πdata and run N ∈ N times until the distribution of XN is
close to an easy-to-sample prior π∞:

πN(xN) =

∫
π(x0, x1, ..xN)dx0...dxN−1 ≈ π∞ .

▶ By the Markov property and Bayes’ formula,

π(x0, x1, ..xN) = πdata(x0)
N∏

k=1

πk|k−1(xk |xk−1) (Forward)

= πN(xN)
N∏

k=1

πk−1|k(xk−1|xk) (Backward)

2(admitting positive transition probabilities)
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DDPM forward main intuitions

▶ Forward phase: hand-designed Gaussian transition kernels such
that for k ∈ {1, 2, . . . ,N},

πk|k−1(xk |xk−1) = N (xk ;
√
1− βk xk−1, βk Id) ,

with noise scale 0 < β1 ≤ β2 ≤ · · · ≤ βN < 1.
▶ The log-density of the transition kernel is

log πk|k−1(xk |xk−1) ∝ −
1

2βk

∥∥∥xk −√1− βk xk−1

∥∥∥2 .

▶ Assume that the βk are small enough such that

log πk(.) = log πk−1(.) +O(βk) ,

and ∥∥∥xk −√1− βk xk−1

∥∥∥2 = ∥xk − xk−1∥2 + o(βk) .
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DDPM backward steps remain Gaussian !
▶ Using Bayes’ Rule,

log πk−1|k(xk−1|xk) = log
πk|k−1(xk |xk−1)πk−1(xk−1)

πk(xk)

∝ log πk|k−1(xk |xk−1) + log πk−1(xk−1)

∝ − 1

2βk
∥xk − xk−1∥2 + log πk(xk−1) +O(βk) .

▶ Using Taylor Expansion,

log πk(xk−1) = log πk(xk) + (xk−1 − xk)
⊤∇ log πk(xk)+

O(∥xk−1 − xk∥2) ,

with ∥xk−1 − xk∥2 ∼ O(βk).
▶ Completing the square, and neglecting terms of order βk , the

conditional backward is Gaussian:

log πk−1|k(xk−1|xk) ∝ −
1

2βk

∥∥∥∥∥∥xk−1 − (xk + βk∇ log πk(xk))︸ ︷︷ ︸
µk

∥∥∥∥∥∥
2

.
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DDPM reverse process and sampling

▶ When the βk are small the reverse conditional distributions
πk−1|k(xk−1 | xk) are approximately Gaussian.

▶ This is a score approximation problem or denoising
problem. In particular, in particular one might see the
connection with Tweedie’s formula (Robbins, 1956),

µk = E[xk−1 | xk ] = xk + βk ∇ log πk(xk)︸ ︷︷ ︸
score function

.

▶ To estimate the score, one can train a neural network3

sθ(xk , k) : {1, 2, ..,N} × Rd → Rd

▶ To sample from the reverse process, sample from π∞ ≈ πN
and apply ancestral sampling on the approximated backward
transitions.

3(no details given at this point).
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DDPM on Gaussian mixture model
▶ DDPM trained on a 2-dimensional mixture of 25 Gaussian

random variables.
▶ The resulting diffusion process is given below on a batch of

1000 samples.
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Impact of the noise schedule on the generation quality

▶ In low dimension the KL-divergence can be estimated using
histograms, several schedules are tested.
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✓ The noise schedule does seem to impact the generation quality.
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Leveraging the power of continuous-time analysis

▶ Convergence results for diffusion models are established in a
continuous setting leveraging stochastic calculus tools.

▶ Indeed, let 0 ≤ ∆ ≤ 2∆ ≤ .. ≤ N∆ = T with ∆ = T/N and
set for all k ∈ [1,N], βk = 2∆. When N →∞:

Xk+∆ =
√
1− 2∆Xk +

√
2∆Z

≈∆→0 (1−∆)Xk +
√
2∆Z ,

Hence, the limiting process of DDPM is, for t ∈ [0,T ],

dXt = −Xt dt +
√
2 dBt .
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SGMs through SDE : forward process

▶ For some diffusion time-horizon T > 0, the forward process(−→
X t

)
t∈[0,T ]

is solution to an Ornstein-Uhlenbeck process:

d
−→
X t = −

−→
X tdt +

√
2dBt , X0 ∼ πdata .

▶ Let Qt be the semi-group associated with
−→
X t and let

πt = πdataQt .

▶ In the time limit, the above transports πdata to a standard
Gaussian distribution π∞ by progressively adding (Gaussian)
noise.
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SGMs through SDE: more on the forward process

▶ As in DDPM the noising procedure implies a scaling down of

the of the data points d
−→
X t = −

−→
X tdt,
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SGMs through SDE: more on the forward process

▶ ... and a Gaussian noising process d
−→
X t =

√
2dBt ,
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SGMs through SDE: more on the forward process
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SGMs through SDE: backward process

▶ Under mild conditions the forward process admits a
time-reversed process (Anderson, 1982; Cattiaux et al., 2021), i.e. in
law, (←−

X t

)
t∈[0,T ]

=
(−→
X T−t

)
t∈[0,T ]

with,

d
←−
X t =

←−X t + 2∇ log πT−t

(←−
X t

)
︸ ︷︷ ︸

score function

 dt +
√
2dBt ,

←−
X 0 ∼ πT .

▶ The score term will drive the backward equation in regions of space
of high probability.

▶ This gives a natural way to construct a backward process and
therefore a generative model as in DPPM.
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A variety of time-homogeneous convergence results

▶ Using this framework a variety of upper bounds to the
distance between the data distribution and the generated
distribution d (πdata, π̂) have been established for various
metrics:
▶ For the total variation distance: De Bortoli et al. (2021).
▶ For the Kullback-Leibler divergence: Conforti et al. (2023);

Bortoli et al. (2023); Chen et al. (2023); Chen (2023).
▶ For the Wasserstein distance: Lee et al. (2022, 2023); Bruno

et al. (2023); Gao et al. (2023).

▶ Remark: one can convert KL bounds into total variation
bounds using Pinsker’s inequality:

∥πdata − π̂∥TV ≤
√

1

2
KL (πdata∥π̂) .
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Adapted theoretical framework: time-inhomogeneous SDE

� An homogeneous forward implies a specific noise schedule choice.

1. Forward process now depends on β : [0,T ] 7→ R>0,

d
−→
X t = −

β(t)

2σ2

−→
X tdt +

√
β(t)dBt ,

−→
X 0 ∼ πdata .

2. Backward process,

d
←−
X t =

β(T − t)

2σ2

←−
X t + β(T − t)∇ log πT−t

(←−
X t

)
︸ ︷︷ ︸

score function

 dt

+ β(T − t)dBt ,
←−
X 0 ∼ πT .

� How to go from this result to a practically viable generative
algorithm?
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SGMs in Practice I: mixing time.

▶ We let Qt be the semigroup of
←−
X t defined as

Qt(x ,dy) = P
(←−
X t ∈ dy |

←−
X 0 = x

)
.

▶ Recall that time-reversal holds when
←−
X 0 ∼ πT, i.e.

πdata = πTQT .

▶ But πt depends on πdata:

πt(xt) =

∫
Rd

πt(xt |x0)︸ ︷︷ ︸
p.d.f. of

−→
X t |X0

πdata(x0) dx0 .

▶ In practice, we want a specified and easy-to-sample probability
π∞ to initialize the generative model.

20 / 46



SGMs in Practice I: mixing time.

▶ � Idea: leverage the ergodicity of the O–U kernel.

▶ Forward process admits time marginal with Z ∼ N (0, Id) and
Z ⊥ X0:

−→
X t = mtX0 + σtZ ,

where:

mt = exp

{
−
∫ t

0

β(s)

2σ2
ds

}
, σ2

t = σ2
(
1−mt

2
)
.

▶ For T large,
πT ≈ π∞ ∼ N

(
0, σ2Id

)
.

� Mixing Time Error: πdata ≃ π∞QT
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SGMs in practice II: learn the score function

▶ Recall that the backward process depends on the score function
∇ log πt(x).

▶ We train a deep neural network sθ : [0,T ]× Rd 7→ Rd to
minimize:

Lexplicit(θ) = E
[∥∥∥sθ (τ,−→X τ

)
−∇ log πτ

(−→
X τ

)∥∥∥2] ,

with τ ∼ U(0,T ) independent of the forward process (
−→
X t)t≥0.

▶ But πτ (x) is unknown !
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SGMs in practice II: learn the score function

▶ � Idea: its conditional version shares the same optimum
(Hyvärinen and Dayan, 2005; Vincent, 2011):

Lscore (θ) = E
[
∥sθ
(
τ,
−→
X τ

)
−∇ log πτ

(−→
X τ |X0

)
∥2
]
.

▶ The conditional score is explicit :

∇ log πτ (
−→
X τ |X0) =

mτX0 −
−→
X τ

σ2
τ

= − Z

στ

▶ Score matching Neural Networks writes as,

Lscore (θ) = E

[∥∥∥∥sθ (τ,−→X τ

)
+

Z

στ

∥∥∥∥2
]
.

� Approximation error: πdata ≈ π∞Qθ
T
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SGMs in practice III: simulate from the backward kernel

▶ Contrary to the forward process the backward is non-linear.

▶ � Idea: discretize [0,T ] by N points with tk = kh and
h = T/N, we let t = tk if kh ≤ t ≤ (k + 1)h.

▶ Consider the Exponential Integrator scheme:

d
←−
X θ

t,N =

(
β(T − t)

2σ2

←−
X θ

t,N + β(T − t)sθ
(
T − tk

←−
X θ

tk ,N

))
dt

+ β(T − t)dBt ,
←−
X 0 ∼ π∞.

� Discretization error: πdata ≈ π∞Qθ
T ,N := π̂

(β,θ)
∞,N
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KL upper bound with minimal hypotheses

Theorem (S. et al 2024)
Hyp: (i) β is continuous, positive, ↗, with

∫∞
0

β(t)dt =∞
(ii) Novikov’s condition on the difference between the actual and

estimated score functions.

(iii) I(πdata|π∞) <∞. Then,

KL
(
πdata∥π̂

(β,θ)
∞,N

)
≤ KL (πdata||π∞) exp

{
− 1

σ2

∫ T

0
β(s)ds

}
︸ ︷︷ ︸

Mixing time

+
N−1∑
k=0

Eβθ,k
∫ T−tk

T−tk+1

β(t)dt︸ ︷︷ ︸
Approx. error

+ 2hβ(T )I(πdata|π∞)︸ ︷︷ ︸
Discr. error

.

with Eβθ,k = E
[∥∥∥∇ log πT−tk

(−→
X T−tk

)
− sθ

(
T − tk ,

−→
X T−tk

)∥∥∥2].
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Sketch of proof

▶ Time reversal, data processing inequality and Girsanov theorem,

KL
(
πdata

∥∥∥π∞Qθ
T ,N

)
= KL

(
πTQT

∥∥∥π∞Qθ
T ,N

)
≤ KL (πT ∥π∞) +

1

2

∫ T

0
E

[∥∥∥∥∥β(t)(∇ log πt

(
τt ,
←−
X t

)
− sθ(τk ,

←−
X tk )

)∥∥∥∥∥
2]

dt

≤ KL (πT ∥π∞)︸ ︷︷ ︸
E1(β)

+
1

2

N−1∑
k=0

∫ tk+1

tk

E

[∥∥∥∥∥β(t)(∇ log πτk

(
τk ,
←−
X τk

)
− sθ(τk ,

←−
X tk )

)∥∥∥∥∥
2]

dt︸ ︷︷ ︸
E2(β,θ)

+
1

2

N−1∑
k=0

∫ tk+1

tk

E

[∥∥∥∥∥β(t)(∇ log πτt

(
τt ,
←−
X t

)
−∇ log πτk

(
τk ,
←−
X τk

)
)
)∥∥∥∥∥

2]
dt︸ ︷︷ ︸

E3(β)

.

with τt = T − t and πk = T − tk .
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Sketch of proof

▶ E1(β) (mixing time error) represents the convergence of the
forward process to its stationary distribution π∞. The rate is
given by Log-Sobolev inequalities.

▶ E2(β, θ) (approximation error) is the quality of the learning

process (L2-error assumed to be finite, i.e. Eβθ,k ≤ ∞) at every
discretization step.

▶ E3(β) (discretization error) arises from discretizing a
continuous-time process into finite steps. Follows from
summing up errors between discterization steps and using

moments bounds on E
[∥∥∥∇ log πt

(←−
X t

)∥∥∥2] (using

time-reversal).
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Numerical analysis I

▶ The effect of β(.) is rather complicated to be studied analytically but
numerical experiments are possible.
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✓ the noise schedule has an impact on the generation quality
(rather expected).

✓ the upper bound captures this effect (maybe less expected).

✓ results are in line with heuristics.
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Refined Wasserstein bound

Theorem (S. et al 2024)
Hyp: (i) πt is Ct-strongly log-concave for t ∈ [0,T ]

(ii) ∇ log πt is Lt-smooth for t ∈ [0,T ]
(iii) there exists M such that

supk∈0,...,N−1 suptk≤t≤tk+1
|∇ log πt −∇ log πtk |L2

≤ Mh(1 + |x |)
Then,

W2

(
πdata, π̂

(β,θ)
∞,N

)
≤ W2 (πdata, π∞) exp

(
−
∫ T

0

β(t)

σ2

(
1 + Ctσ

2
)
dt

)
︸ ︷︷ ︸

Mixing Time

+
N−1∑
k=0

(∫ tk+1

tk

L̄t β̄(t)dt

)(√
2hβ(T )

σ
+

hβ(T )

2σ2
+

∫ tk+1

tk

2L̄t β̄(t)dt

)
B

+ EβTβ(T ) +MhTβ(T ) (1 + 2B)

with B = (E[∥X0∥2] + σ2d)1/2, L̄t = LT−t , β̄(t) = β(T − t), and
Eβ = sup

k∈{0,..,N−1}

∥∥∇ log πT−tk

(
X̄ θ
tk

)
− sθ

(
T − tk , X̄

θ
tk

)∥∥
L2
.
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Corollary
If ∇ log πdata is L0-Lipschitz and log πdata est C0-strongly concave
with C0 > 1/σ2, then

W2

(
πdata, π̂

(β,θ)
∞,N

)
≤ W2 (πdata, π∞) exp

(
−
∫ T

0

β(t)

σ2

(
1 + C ′

tσ
2
)
dt

)

+
√
hL0β(T )T

√
2β(T )

σ

+ hβ(T )T

(
L0

(
1

2σ2
+ 2L0

)
β(T )B +M(1 + 2B)

)
+ εTβ(T ) .

with

C ′
t =

1

m2
t /C0 + σ2 (1−m2

t )
− 1

σ2
,

mt = exp

(
− 1

2σ2

∫ t

0

β(s)ds

)
.
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Sketch of Proof

W2

(
πdata, π̂

(β,θ)
∞,N

)
≤ W2 (πdata, π∞QT ) +W2

(
π∞QT , π∞QN,θ

T

)

1. Mixing time error:
▶ Contractivity of the O.U. kernel for the forward process:

W2 (πT , π∞) ≤ W2 (πdata, π∞) exp

(
−
∫ T

0

β(t)

2σ2
dt

)
.

▶ Contractivity of the backward process under strong
log-concavity of the score function:

W2 (πTQT , π∞QT ) ≤ W2 (πdata, π∞) exp

(
−
∫ T

0

β(t)

σ2

(
1 + Ctσ

2
)
dt

)
.

2. Approximation error and discretization error:

▶ Control the difference between the true backward process
←−
X ∞

t

and the discretized process X̄ θ
t using the forward backward

relationship.
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Numerical analysis II
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Figure: Comparison of the empirical W2 distance (mean ± std over 10 runs)

between πdata and π̂
(β,θ)
∞,N (orange) and the related upper bounds (blue) across

parameter a for noise schedule βa, d = 50.
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Calibration of σ2 and Forward Regularization

Assuming the hypotheses of the corollary are verified on πdata, the
choice of the stationary distribution N (0, σ2Id) is not obvious a
priori.

▶ If σ2 ↑, then Lt ↓; we ”gain in regularity” of the score
function. Also,

1

σ2
≤ L0 =⇒ ∀t ∈ [0,T ], Lt ≤ L0 .

▶ If σ2 ↑, then Ct ↓; we ”lose in concavity” of the score
function. Also,

1

σ2
≤ C0 =⇒ ∀t ∈ [0,T ], Ct ≤ C0 .
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Data conditioning and Forward Regularization

▶ The Gaussian experiment reveals that data conditioning is
crucial.

▶ If πdata = N (µ,Σ) then:

C0 =
1

λmax(Σ)
and L0 =

1

λmin(Σ)
.

▶ The smaller the ratio L0/C0 = λmax/λmin, the tighter the
bound, regardless of the choice of σ2.
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Illustration of the Impact of Conditioning
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Figure: Comparison of empirical W2 distances (mean ± std over 10 runs)

between πdata and π̂
(β,θ)
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of parameter a in the schedule βa, with d = 50.
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Beyond the Gaussian setting: Funnel distribution
▶ πdata(x) = N (x1; 0, 1)

∏d
j=2N (xj ; 0, exp(x1)) in dimension

d = 50.
▶ To evaluate the data generation we use the 2-Sliced

Wasserstein distance.
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✓ The Wasserstein bound seems to hold for more general
distributions.
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Funnel distribution scatter plot
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Figure: 10 000 samples from a funnel distribution in dimension 50. Plot of
the 1st and 2nd dimension (left) and plot of the 1st, 2nd and 3rd
dimension (right).
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Beyond the Gaussian setting: back to GMM !

▶ πdata(x) =
1
25

∑
(j ,k)∈{−2,...,2}2 φµjk ,Σd

(x) with φµjk ,Σd

denoting the probability density function of the Gaussian
distribution in dimension d = 50.
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Beyond the Gaussian setting: images ?

▶ Using pretrained denoiser nets from Karras et al. (2022) on
CIFAR10 seems to validate the parametric family βa and is in
line with the optimal choices of a∗.
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Final word and extension

▶ Some works consider homogeneous forward and
non-homogeneous discretization steps ∆k = tk+1 − tk , the
Euler-Maruyama updates write:

Xtk+1
= Xtk − Xtk∆k +

√
2∆kZk .

▶ One can retrieve an inhomogeneous SDE with constant
discretization steps setting ∆ = T/N and

β(tk) =
2∆k

∆
.

▶ However, this approach will prescribe noise schedule choice only
at the disretization points which is somehow less informative.

▶ The previous upper bounds assumed constant step size only for
the sake of clarity.

41 / 46



Final word and extension

▶ We saw theoretically and empirically that the noise schedule
has an impact in the generation quality for SGMs.

▶ This line of work pave the way for noise schedule
optimization dependent on the data properties and on the
other hyperparameters (discretization steps, stationnary law,
diffusion time).

▶ However the estimation of the bound remains tricky in high
dimension due to error terms difficult to estimate.
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