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Generative modeling framework

> D= {x}"; € (RY)" a collection of i.i.d. samples from an
unknown distribution 7Tgata™ .

» Goal: generate new samples from 7y, (i.e. find a proba
Too and a simulable kernel @ such that Tgata ™~ Too Q).

Complex data distribution mgata Easy-to-sample distribution .,

Too @

n this presentation, 7 will be used interchangeably to denote a probability
distribution and its associated probability density function (p-d.f.)
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SGMs Philosophy

» “Creating noise from data is easy; creating data from noise is
generative modeling.” (Song et al., 2021)

Complex data distribution myata Easy-to-sample distribution ..

Backward phase

Forward phase
e

» EEEEEEEEER
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What is the appropriate amount of noise ?

» The noising/denoising process is at the core of SGMs.

» SGMs require to hand-design the intensity and the form of the
noising procedure.

> Little is known theoretically, we only know best practices
from experience and empirical studies (Nichol and Dhariwal, 2021; Guo
et al., 2023; Chen, 2023).

t=1
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Can we tell which is better?

0.200 N
—— Linear sequence

01751 —— Geometric sequence

0.150
0.125
S 0100
0.075
0.050

0.025

Figure: Xy = Xo + o¢ - Z, with Xo ~ pgata and Z ~ N(0, Iy). For a sequence of
positive scalar o¢ for t € {1, ...,8} with oy = 0.01 and og = 0.2.
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Foundational insights from DDPM

» Denoising Diffusion Probabilistic Models (Sohl-Dickstein et al., 2015;
Ho et al., 2020).

» Consider the Markov chain ? Xy, X1, X... € RY starting at
Xo ~ Tgata and run N € N times until the distribution of Xy is
close to an easy-to-sample prior my:

7TN(XN) = /71’(X0,X17 ..XN)dXO...dXN,1 X Moo -

» By the Markov property and Bayes' formula,

N
(X0, X1, - XN) = Tdata(X0) H Th k-1 (X[ Xk—1) (Forward)
k=1
N
= 7mn(xn) H 7Tk71|k(Xk—1|Xk) (Backward)
k=1

2(admitting positive transition probabilities)
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DDPM forward main intuitions

» Forward phase: hand-designed Gaussian transition kernels such
that for k € {1,2,..., N},

Thpk—1(Xi|Xk—1) = N (x1c; /1 = Br x—1, Bla) ,

with noise scale 0 < 81 < B <--- < By < 1.
» The log-density of the transition kernel is

1 2
log 7xk—1(Xk|Xk—1) o< ~ 25 HXk —V/1- Bk Xk—lH
» Assume that the 3x are small enough such that

log mk(.) = log mk—1(.) + O(Bk) ,

and
ka — /1= Bk kale =[x — xk—1]* + o(Bk) -
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DDPM backward steps remain Gaussian !
> Using Bayes' Rule,
k=1 (X Xk—1) Tr—1(Xk—1)
7Tk(Xk)

oc log 7y k—1(Xk[Xk—1) 4 log Tk —1(xk—1)

log 7Fk—1|k(Xk—1\Xk) = log

1
o — 5 [x = xe—1]* + log me(xk—1) + O(Bi) -
2k

» Using Taylor Expansion,
log mx(xk—1) = log mi(xx) + (Xk—1 — xk)TV log mx(xk )+

O(w-1 = xcll”)

with [|xe_1 — x||> ~ O(Bk).
» Completing the square, and neglecting terms of order i, the

conditional backward is Gaussian:
2

1
log 7k — 1k (Xk—1]xk) ~ 25 Xk—1 — (X + BV log m(xk))

ok
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DDPM reverse process and sampling

> When the Sy are small the reverse conditional distributions
Tr—1)k(Xk—1 | xx) are approximately Gaussian.

P> This is a score approximation problem or denoising
problem. In particular, in particular one might see the
connection with Tweedie's formula (Robbins, 1956),

pk = Elxk—1 | xk] = xx + Br V log mi(xk) -
N———
score function

» To estimate the score, one can train a neural network3
. d d
Sg(Xk,k) . {1,2,..,N} xR =R

> To sample from the reverse process, sample from 7, = mpy
and apply ancestral sampling on the approximated backward
transitions.

*(no details given at this point).
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DDPM on Gaussian mixture model

» DDPM trained on a 2-dimensional mixture of 25 Gaussian

» The resulting diffusion process is given below on a batch of

Forward process

Backward process

random variables.

1000 samples.

Tdata

v

. . . . .

t 3

%

=

Moo

ot
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Impact of the noise schedule on the generation quality

» In low dimension the KL-divergence can be estimated using
histograms, several schedules are tested.

00200 —— Linear schedule
Convex schedule
00175
—— Concave schedule
00150 g —— Constant schedule
o125
o 00100

0.0075

w

w
o

Empirial KL Divergence
» ~
5 &

0.0050

o

0.0025

°

0,000

0 5 10 15 20 25 30 0 5 10 15 20 25 30
3 Epochs
Noise schedule Empirical KL(7gatal7).

v/ The noise schedule does seem to impact the generation quality.
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Leveraging the power of continuous-time analysis

» Convergence results for diffusion models are established in a
continuous setting leveraging stochastic calculus tools.

» Indeed, let 0 < A <2A <..< NA =T with A=T/N and
set for all k € [1, N], Bx = 2A. When N — oo:

Xesn = V1— 20X, + V2AZ
~asso (1 — D)X+ V2AZ,

Hence, the limiting process of DDPM is, for t € [0, T],

dX; = =X, dt + V2 dB;.
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SGMs through SDE : forward process

» For some diffusion time-horizon T > 0, the forward process
<Xt) is solution to an Ornstein-Uhlenbeck process:
tefo, T

AX,: = — X, dt + V2dB,, X ~ Tauss

> Let Q; be the semi-group associated with X; and let
Tt = Tdata Qt-
» In the time limit, the above transports my,t, to a standard

Gaussian distribution 7., by progressively adding (Gaussian)
noise.
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SGMs through SDE: more on the forward process

» As in DDPM the noising procedure implies a scaling down of
the of the data points d X; = — X .dt,
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SGMs through SDE: more on the forward process

» ... and a Gaussian noising process d?t = \/2dB;,
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SGMs through SDE: more on the forward process

16/ 46



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}



SGMs through SDE: backward process

» Under mild conditions the forward process admits a
time-reversed process (Anderson, 1982; Cattiaux et al., 2021), i.€. in

law,
(yt) e, 1] (7 T_t) te[0,7]

with,

aX. = [ X.+2VIognr_. (Yt) dt +V2dB,, Xo~ 1.
————

score function

» The score term will drive the backward equation in regions of space
of high probability.

» This gives a natural way to construct a backward process and
therefore a generative model as in DPPM.
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A variety of time-homogeneous convergence results

» Using this framework a variety of upper bounds to the
distance between the data distribution and the generated
distribution d (7gata, ) have been established for various
metrics:

> For the total variation distance: De Bortoli et al. (2021).

» For the Kullback-Leibler divergence: Conforti et al. (2023);
Bortoli et al. (2023); Chen et al. (2023); Chen (2023).

> For the Wasserstein distance: Lee et al. (2022, 2023); Bruno
et al. (2023); Gao et al. (2023).

» Remark: one can convert KL bounds into total variation
bounds using Pinsker's inequality:

R 1 ~
| Tdata — 7THTV < EKL (TdatallT) -
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Adapted theoretical framework: time-inhomogeneous SDE

A An homogeneous forward implies a specific noise schedule choice.

1. Forward process now depends on /3 : [0, T] — Ro,

v t -
dX, = —%Ytdt + \/MdBt, 70 ~ Tdata -

2. Backward process,

202

aX = [ 2T O% 4 a7 - ) Viogrr_. (Yt) dt
[ ——

score function

FB(T - 1)dB;, Xo~ 1.

¢ How to go from this result to a practically viable generative
algorithm?
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SGMs in Practice |: mixing time.

> We let Q; be the semigroup of Yr defined as

Qi(x,dy) =P (yt € dy|yo = x) .
» Recall that time-reversal holds when yo ~ 7T, i€

Tdata = TT QT .

» But 7 depends on myata:

7Tt(Xt) = /Rd Wt(Xt’XO) 7Tdata(XO) dxp .

p.d.f. of X¢[Xo

» In practice, we want a specified and easy-to-sample probability
oo to initialize the generative model.
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SGMs in Practice |: mixing time.

> @ Idea: leverage the ergodicity of the O-U kernel.
» Forward process admits time marginal with Z ~ N/(0, /) and

Z 1 Xp:
%
Xt:mtX0+UtZ,
where:
t
B(s)
mt—exp{— Oﬁds , crf:crz(l—mf).

> For T large,
T & Moo ~ N (0,J2ld) )

A Mixing Time Error: mgas ~ oo QT
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SGMs in practice Il: learn the score function

» Recall that the backward process depends on the score function
V log m¢(x).
» We train a deep neural network sy : [0, T] x R = RY to
minimize:
]

Eexplicit(g) =E [HS@ (7’, )_(>T) —Viogm, (77)

with 7 ~ (0, T') independent of the forward process (Yt)tZO-

» But 7-(x) is unknown !
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SGMs in practice Il: learn the score function

» @ Idea: its conditional version shares the same optimum

(Hyvarinen and Dayan, 2005; Vincent, 2011):

Locore (0) =E [[1so (7, X ) = VIog - (X-1%0) I] -

» The conditional score is explicit :

Xo—X.  Z
Vlog 7 (X, |Xo) = ’”‘;72 --=

» Score matching Neural Networks writes as,

2

So (T, 7.,.) + £

Or

Escore (9) =E l

A Approximation error: Taut, &~ Too QF
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SGMs in practice Ill: simulate from the backward kernel

» Contrary to the forward process the backward is non-linear.

> Q@ Idea: discretize [0, T] by N points with t, = kh and
h=T/N, we let t = t, if kh <t <(k+1)h.
» Consider the Exponential Integrator scheme:

d?t,\,_< §9N+5 —t)Sg(T tkyt N))dt
+B(T - 1)dB:, Xo ~ Toc

. . 0
A Discretization error: Ty, &~ Too Q(% = :(EN)
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KL upper bound with minimal hypotheses

Theorem (S. et al 2024)

Hyp: (i) B is continuous, positive, /, with fo B(t)dt = oo
(ii) Novikov's condition on the difference between the actual and
estimated score functions.

(iii) Z(TdatalToo) < 00.  Then,

KL (wdatanﬁ )> < KL (Tdatal|7s0) exp / B(s ds

Mixing time

N—1 ) T—ty
+3 &), / plode+ 2h3(T)H(maara|moo) -

k=0 ' T—tki1

~~

Approx. error Discr. error

il

with E‘g)k = IE[HV log m7_4, <)_<>T—tk) — 59<T — ty, 7T—q>
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Sketch of proof

» Time reversal, data processing inequality and Girsanov theorem,

KL (Wdata
1 T
< KL(rrlme) + 5 [ B
0

<KL(7r-,—||7roo += Z/ [

7 Qf ) = KL (’R'TQT’

0
Too QT,N)

2
B(t) (v log ¢ (Tt,%) - se(n,?tk)) H }dt

(t) VlogTer (Tk,7 ) — 59(7%?:,())
E>(8B,0)
B(t) (V log 7+, (Tt,yt> — Vlog mr, (Tk,yﬂ()))

E3(B)

2
}dt
2

}dt.

with 7 =T —tand = T — ty.
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Sketch of proof

» E£1() (mixing time error) represents the convergence of the
forward process to its stationary distribution 7. The rate is
given by Log-Sobolev inequalities.

> E5(/3,0) (approximation error) is the quality of the learning
process (Lp-error assumed to be finite, i.e. Egk < 00) at every
discretization step.

» E3(/3) (discretization error) arises from discretizing a
continuous-time process into finite steps. Follows from
summing up errors between discterization steps and using

moments bounds on E [HV log 7 (yt) Hz] (using

time-reversal).
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Numerical analysis |

P The effect of 3(.) is rather complicated to be studied analytically but
numerical experiments are possible.

-10.0

il KL(MTgata. 1) (NN) H
75 .
17.5 KL(Mgata, 1) (€xact score)
150 50 4 VPSDE (NN)
125 =25
100 oo i i
75 s
* -=-5.0 1 [
25
-7
o0 -10 -5 0 5 10
00 02 04 06 s 10

-0 Values of a
Noise schedules 3, Isotropic Gaussian N (14,0.51,)

Figure: Comparison of the empirical KL divergence (mean =+ std over 10 runs)

between mgata and %(;",\?) (orange) and the upper bound (blue) across parameter

a for noise schedule 3., d = 50.
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v/ the noise schedule has an impact on the generation quality
(rather expected).

v the upper bound captures this effect (maybe less expected).

v  results are in line with heuristics.

b KL(Tgata, ) (NN) KL(Tgata,) (NN)
KL(Mgata,1T) (exact score) ] KL(Mgata,1T) (exact score) r
| VPSDE (NN) VPSDE (NN)
-10 -5 0 5 10 -10 -5 0 5 10
Values of a Values of a
Anisotropic A (1,4, ¥ (heterosc)) 4 Correlated N (14, £(c0™)) 5

4):(hetemsc) is diag. and ):l(.jhcmmsc) =1forl1<j<5 and Zl(.].hcmmsc) = 0.01 otherwise.

S5(corr) i diag. 1 and >:J(,J_C,°”) =1/ /=7 for1 <j#j <d.
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Refined Wasserstein bound

Theorem (S. et al 2024)

Hyp: (i) 7 is Cy-strongly log-concave for t € [0, T]
(ii) Vlog s is Ly-smooth for t € [0, T
(iii) there exists M such that

SUPkeo,... N—1SUPy <t<t,,, |V 10g T — Viogme, |, < Mh(L + [x])
Then,

.....

T [

[ ‘(3 t
Wa <7Tdataa 7?(5:7\/)) <W; (Wdataa 7700) exp <_/ : 0(_2) (1 + Cta2) dt)
0

Mixing Time
N—1 t - t
ko 2hB(T hp(T kbt
+> (/ Lt/’?(t)dt) all )+ “ (2) +/ 2L,5(t)dt | B
pr AN o 20 t

+EPTH(T)+ MATH(T)(1+2B)

with B = (E[||Xo||?] + 02d)*/?, Ly = L1_, B(t) = B(T —t), and

&l = sup HV log T1_¢, (Xt(i) — Sp (T — tk,)_(t‘i)

ke{0,..,N—1} HLZ.
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Corollary

If V log Tgata is Lo-Lipschitz and log wyata est Co-strongly concave
with Cy > 1/02, then

T
(L t
Wo (ﬂdata,ng:i)) < W (Tdatas Too ) EXP (—/ % (1 + Ct’g2) dt)
0

+ \/ELOB(T)T72§(T)

+hB(T)T <L0 (%; + 2L0> B(T)B+ M(1+ 2B)> +eTH(T).

with
_ 1 _ 1
C m2/Co+02(1—-m2) o2’

m; = exp (_Z;/O ,B(S)ds) .

G
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Sketch of Proof
W2 (ﬂ-datay <(><> N) < W2 (ﬂdata, Too QT) + W2 (WOOQTyﬂ-oo QT )

1. Mixing time error:
» Contractivity of the O.U. kernel for the forward process:

Wa (77, Too) < Wa (Tdata, Too ) €XP (f G )dt) .
0

» Contractivity of the backward process under strong
log-concavity of the score function:

.
Wa (17 QT, Too QT) < Wa (Tdata, Too) €XP (*/ % (1 + Ct02) dt) .
0

2. Approximation error and discretization error:

> Control the difference between the true backward process y;’o
and the discretized process X! using the forward backward
relationship.
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Numerical analysis |l

Wa(Mgatar 1) (NN)
W) (Mgata, 1) (€Xact score)
VPSDE (NN)

-10 -5 0 5 10
Values of a

(a) Isotropic N (14,0.514)

Figure: Comparison of the empirical W, distance (mean + std over 10 runs)
between Tgata and %(oi?v) (orange) and the related upper bounds (blue) across

parameter a for noise schedule 3., d = 50.

Wa(data, 1) (NN)

W) (Mgata,1T) (€Xxact score)

VPSDE (NN)

-10

-5

5
Values of a

10

(b) Correlated N/ (1d,z(corr))
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Calibration of 0 and Forward Regularization

Assuming the hypotheses of the corollary are verified on mgata, the
choice of the stationary distribution A/(0,52/y) is not obvious a
priori.
» If 021, then L; |; we ”gain in regularity” of the score
function. Also,

1
szo = Vte[0,T], L:<lLp.

» If 02 1, then C; |; we "lose in concavity” of the score
function. Also,

1
;SCO — vVte[0,T], G<G.
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Data conditioning and Forward Regularization

> The Gaussian experiment reveals that data conditioning is
crucial.

» If Tgata = N (i, ) then:

1 1
Co=-——— and Lg=— 0.
0 )\max(z) an 0 Amin(z)

» The smaller the ratio Lo/ Co = Amax/Amin, the tighter the
bound, regardless of the choice of o2,
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lllustration of the Impact of Conditioning

WalTaata, 1) (NN) 1 Wa(Taara, 7) (NN) r
] W) (Mgata M) (exact score) - W)(Mgata 1) (€xact score)
VPSDE (NN) VPSDE (NN) F
-10 -5 0 5 10 -10 -5 0 5 10
Values of a Values of a

(a) Anisotropic Ly/Co = 100 (b) Rescaled Anisotropic Lo/Cp =1

Figure: Comparison of empirical W, distances (mean =+ std over 10 runs)
between Tgata and %(fjﬁ,) (orange) and the upper bound (blue) for different values

of parameter a in the schedule (3,, with d = 50.
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Beyond the Gaussian setting: Funnel distribution
» Tdata(x) = N (x1;0,1) HJ‘?:QN(XJ-; 0,exp(x1)) in dimension
d =50.
» To evaluate the data generation we use the 2-Sliced
Wasserstein distance.

Param. sched. B,
— == Cosine sched. Bcos

________________________ e
_ / i
\ ~
) S
-10 0 10 20
Values of a

v/ The Wasserstein bound seems to hold for more general

distributions.
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Funnel distribution scatter plot

Figure: 10 000 samples from a funnel distribution in dimension 50. Plot of
the 1st and 2nd dimension (left) and plot of the 1st, 2nd and 3rd
dimension (right).
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Beyond the Gaussian setting: back to GMM !

> Tdata(X) = 2_15 Z(j,k)e{—z,...,z}2 Soujk,):d(x) with Phji,Td
denoting the probability density function of the Gaussian
distribution in dimension d = 50.

2254 \ T e 55:535 1
gzo.o- L0.08 %
€ 17.51 5
§ 15.0- To0es
5 :
> 12,51 L0.04”

10.0-

-10 0 10 20
Values of a
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Beyond the Gaussian setting: images 7

» Using pretrained denoiser nets from Karras et al. (2022) on
CIFAR10 seems to validate the parametric family 5; and is in
line with the optimal choices of a*.

181 —e— FID Score B,

14

FID Scores

-10.0 =75 -5.0 =25 0.0 25 5.0 7.5 10.0
Values of a
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Final word and extension

» Some works consider homogeneous forward and
non-homogeneous discretization steps Ay = ty1 — t, the
Euler-Maruyama updates write:

th+1 - th - thAk + AV 2Aka .

» One can retrieve an inhomogeneous SDE with constant
discretization steps setting A = T /N and

B(tk) = 2271(

» However, this approach will prescribe noise schedule choice only
at the disretization points which is somehow less informative.

» The previous upper bounds assumed constant step size only for
the sake of clarity.
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Final word and extension

> We saw theoretically and empirically that the noise schedule
has an impact in the generation quality for SGMs.

» This line of work pave the way for noise schedule
optimization dependent on the data properties and on the
other hyperparameters (discretization steps, stationnary law,
diffusion time).

» However the estimation of the bound remains tricky in high
dimension due to error terms difficult to estimate.
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