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Generative modelling framework

» Dataset D = {x;}"_, € (R9)" of i.i.d. samples from g
(unknown).

» Goal: generate new samples from 74, (i.e. find a proba
Too and a simulable kernel @ such that Tgata ™~ Too Q).

Complex data distribution myata Easy-to-sample distribution .
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SGMs Philosophy

» “Creating noise from data is easy; creating data from noise is
generative modeling.” [Song et al., 2021]

Complex data distribution mgata Easy-to-sample distribution .

Backward phase

Forward phase
—_
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Introduction to SGMs: time reversal of diffusion processes

1. Forward process: Convert 7y, to an easy-to-sample distribu-
tion T by progressively adding (Gaussian) noise.
» Forward flow

v 1=
dXe = -5 X dt +v2dB,, Xo ~ Tdata
g
» Classical O.U. with time marginal, Z ~ N (0,14), ZLXo

Yt =e Xy +V1—-e2tZ7.

2. Backward process: Start from pure noise o, and reverse the
noising dynamics to recover myata. [Anderson, 1982]

(yt) te[0,T] = <YT7t) te[0,T]

dyt: %Yt+2V|og7TT_t (YJ dt+\6d3t, yONWT-
—_————

score function
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What is the appropriate amount of noise ?

» SGMs require to hand-design the intensity and the form of the
progressive noising procedure.

» Little is known theoretically about the choice of a noise
schedule. We only know best practices from experience.
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Adapted theoretical framework: time-inhomogeneous SDE

1. Forward process now depends on 3 : [0, T] — R

aX, = —%Ytdt + VBB,  Xo ~ Tdata.-

2. Backward process:

ax, = %Yr + B(T —t)Viegmr_; (Yt) dt

—_———
score function

+5(T—f)d8t, YONTFT.

We let Q: be the semigroup of yt defined as

Qi(x,dy) = P (Yt cay|X. = X) .
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SGMs in practice |: converging to 7.

» Forward process time-marginal writes as X; = m Xy + 0+Z
with m, = exp{— [, B(s)ds/(20%)} and 07 = o*(1 — m}).
» Recall that mgaa = 77 Q7 but 7 depends on Tgata,

re(xe) = /R  gilube) (o)
p.d.f. of X:|Xo

» In practice we leverage the ergodicity of the O.U. kernel and set T
large so that with 7o, ~ N (0,0%14) ,

Tdata = Too QT~

A Mixing time error.
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SGMs in practice Il: learn the score function
» The backward process depends on the score function
V log m¢(x) which is unknown.

» We train a deep neural network sy : [0, T] x R = RY to
minimize:
2
i

with 7 ~ (0, T) independent of the forward process (Yt)tzo-
» But p;(x) is intractable !

Lexplicit(0) = E [Hse (T, )_<>T> — Vlogm, <)_(>T>

» Solution: its conditional version shares the same optimum
[Vincent, 2011]

Lcore (9) =EK [HSO <7_7 77) -V |Og Tr (7T|X0> ”2] .
A Approximation error: Tga, & WXQ%)—
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SGMs in practice Ill: simulate from the backward kernel

» Contrary to the forward process the backward is non-linear.

» We discretize [0, T] by N points with t, = kh with h= T /N,
we let t =ty if kh <t < (k+1)h.

» Consider the Exponential Integrator scheme:

d?t,\,_< §9N+5 —t)se(T tkyt N))dt
+ B(T — t)dB:, Xo ~ pr.

. S 0
A Discretization error: Ty, &~ Too Q(% = :(EN)
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KL upper bound with minimal hypothesis

Theorem (S. et al 2024)

Hyp: (i) B is continuous, positive, /, with fo B(t)dt =
(ii) Novikov's condition on the difference of the actua/ and estimated
scores.

(iii) Z(TdatalToo) < 00.  Then,

KL (wdatanﬁ )> < KL (Tdatal|7s0) exp / B(s ds

Mixing time

N-1 3 T—ty
+ 2 ok / B(t)dt+  2hB(T)I(mdatalmoo) -
k=0 Ttk

~~

Approx. error Discr. error

il

with E‘g)k = E[”V log p7_¢, (Yr_tk) — 59<T — ty, Yr_tk)
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Numerical analysis |
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Figure: Comparison of the empirical KL divergence (mean + std over 10 runs)

between mgata and %(f",\?) (orange) and the upper bound (blue) across parameter

a for noise schedule 3,, d = 50.
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Numerical analysis |l
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Figure: Comparison of the empirical KL divergence (mean + std over 10 runs)
between 7data and 7?(;3/\?) (orange) and the upper bound (blue) across parameter

a for noise schedule 3., d = 50.
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Refined Wasserstein bound

Theorem (S. et al 2024)
Hyp: (i) 7 is Cy-strongly log-concave through diffusion
(ii) V log 7y is L-smooth through diffusion
(i) V log 7y is of linear growth of at most M.
Then,

T [

pa ‘(3 t
Wo <7Tdataa 7?(35:7\/)) <W, (Wdataa 7700) eXp <_/ : 0(_2) (1 + Cta2) dt)
0

Mixing Time
N—-1 t t
ko 2hB(T hp(T Kl
+> (/ Ltﬂ’(t)dt) 5( )+ “ (2) +/ 2L, 5(t)dt | B
pr AN o 20 t

+EPTH(T)+ MATB(T)(1+2B)

with B = (E[|| Xo||*] + 02d)*/? and

&b = sup HVIogWT_tk (Xt(i) — Sy (T — tk,)_(t‘i)

ke{0,..,N—1} HLZ.

13/15



Numerical analysis |l
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Figure: Comparison of the empirical W, distance (mean =+ std over 10 runs)

between Tdata and ?r(;f\,) (orange) and the related upper bounds (blue) across
parameter a for noise schedule 3,, d = 50.

1 . . . . .
3 (corr) € RY%9 is a full matrix whose diagonal entries are equal to one and the off-diagonal terms are

£ 1T Tfor 1< #) < d
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Beyond the Gaussian setting

» Funnel distribution in dimension d = 50

Tdata(X) = N (x1;0,1) Hf:zN(@'? 0, exp(x1))

\ «— Param. sched. B,
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v/ The Wasserstein bound seems to hold for more general
distributions.
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