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Generative modelling framework
▶ Dataset D = {xi}ni=1 ∈ (Rd)n of i.i.d. samples from πdata

(unknown).
▶ Goal: generate new samples from πdata (i.e. find a proba

π∞ and a simulable kernel Q such that πdata ≃ π∞Q).
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SGMs Philosophy

▶ “Creating noise from data is easy; creating data from noise is
generative modeling.” [Song et al., 2021]
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Introduction to SGMs: time reversal of diffusion processes

1. Forward process: Convert πdata to an easy-to-sample distribu-
tion π∞ by progressively adding (Gaussian) noise.
▶ Forward flow

d
−→
X t = −

1

σ2

−→
X tdt +

√
2dBt , X0 ∼ πdata

▶ Classical O.U. with time marginal, Z ∼ N (0, Id), Z⊥X0

−→
X t = e−tX0 +

√
1− e−2tZ .

2. Backward process: Start from pure noise π∞ and reverse the
noising dynamics to recover πdata. [Anderson, 1982](←−
X t

)
t∈[0,T ]

=
(−→
X T−t

)
t∈[0,T ]

d
←−
X t =

 1

σ2

←−
X t + 2∇ log πT−t

(←−
X t

)
︸ ︷︷ ︸

score function

 dt +
√
2dBt ,

←−
X 0 ∼ πT .
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What is the appropriate amount of noise ?

▶ SGMs require to hand-design the intensity and the form of the
progressive noising procedure.

▶ Little is known theoretically about the choice of a noise
schedule. We only know best practices from experience.
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Adapted theoretical framework: time-inhomogeneous SDE

1. Forward process now depends on β : [0,T ] 7→ R>0

d
−→
X t = −

β(t)

2σ2

−→
X tdt +

√
β(t)dBt ,

−→
X 0 ∼ πdata .

2. Backward process:

d
←−
X t =

β(T − t)

2σ2

←−
X t + β(T − t)∇ log πT−t

(←−
X t

)
︸ ︷︷ ︸

score function

 dt

+ β(T − t)dBt ,
←−
X 0 ∼ πT .

We let Qt be the semigroup of
←−
X t defined as

Qt(x ,dy) = P
(←−
X t ∈ dy |

←−
X t = x

)
.
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SGMs in practice I: converging to π∞

▶ Forward process time-marginal writes as Xt = mtX0 + σtZ
with mt = exp{−

∫ t

0
β(s)ds/(2σ2)} and σ2

t = σ2(1−m2
t ).

▶ Recall that πdata = πTQT but πt depends on πdata,

πt(xt) =

∫
Rd

qt(xt |x0)︸ ︷︷ ︸
p.d.f. of Xt |X0

πdata(x0)dx0 .

▶ In practice we leverage the ergodicity of the O.U. kernel and set T
large so that with π∞ ∼ N

(
0, σ2Id

)
,

πdata ≃ π∞QT .

� Mixing time error.
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SGMs in practice II: learn the score function

▶ The backward process depends on the score function
∇ log πt(x) which is unknown.

▶ We train a deep neural network sθ : [0,T ]× Rd 7→ Rd to
minimize:

Lexplicit(θ) = E
[∥∥∥sθ (τ,−→X τ

)
−∇ log πτ

(−→
X τ

)∥∥∥2] ,

with τ ∼ U(0,T ) independent of the forward process (
−→
X t)t≥0.

▶ But pτ (x) is intractable !

▶ Solution: its conditional version shares the same optimum
[Vincent, 2011]

Lscore (θ) = E
[
∥sθ
(
τ,
−→
X τ

)
−∇ log πτ

(−→
X τ |X0

)
∥2
]
.

� Approximation error: πdata ≈ π∞Qθ
T
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SGMs in practice III: simulate from the backward kernel

▶ Contrary to the forward process the backward is non-linear.

▶ We discretize [0,T ] by N points with tk = kh with h = T/N,
we let t = tk if kh ≤ t ≤ (k + 1)h.

▶ Consider the Exponential Integrator scheme:

d
←−
X θ

t,N =

(
β(T − t)

2σ2

←−
X θ

t,N + β(T − t)sθ
(
T − tk

←−
X θ

tk ,N

))
dt

+ β(T − t)dBt ,
←−
X 0 ∼ pT .

� Discretization error: πdata ≈ π∞Qθ
T ,N := π̂

(β,θ)
∞,N
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KL upper bound with minimal hypothesis

Theorem (S. et al 2024)
Hyp: (i) β is continuous, positive, ↗, with

∫∞
0

β(t)dt =∞
(ii) Novikov’s condition on the difference of the actual and estimated

scores.

(iii) I(πdata|π∞) <∞. Then,

KL
(
πdata∥π̂

(β,θ)
∞,N

)
≤ KL (πdata||π∞) exp

{
− 1

σ2

∫ T

0
β(s)ds

}
︸ ︷︷ ︸

Mixing time

+
N−1∑
k=0

Eβθ,k
∫ T−tk

T−tk+1

β(t)dt︸ ︷︷ ︸
Approx. error

+ 2hβ(T )I(πdata|π∞)︸ ︷︷ ︸
Discr. error

.

with Eβθ,k = E
[∥∥∥∇ log pT−tk

(−→
X T−tk

)
− sθ

(
T − tk ,

−→
X T−tk

)∥∥∥2].
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Numerical analysis I
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Figure: Comparison of the empirical KL divergence (mean ± std over 10 runs)

between πdata and π̂
(βa,θ)
∞,N (orange) and the upper bound (blue) across parameter

a for noise schedule βa, d = 50.
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Numerical analysis II
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Figure: Comparison of the empirical KL divergence (mean ± std over 10 runs)

between πdata and π̂
(βa,θ)
∞,N (orange) and the upper bound (blue) across parameter

a for noise schedule βa, d = 50.
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Refined Wasserstein bound

Theorem (S. et al 2024)
Hyp: (i) πt is Ct-strongly log-concave through diffusion

(ii) ∇ log πt is Lt-smooth through diffusion
(iii) ∇ log πt is of linear growth of at most M.

Then,

W2

(
πdata, π̂

(β,θ)
∞,N

)
≤ W2 (πdata, π∞) exp

(
−
∫ T

0

β(t)

σ2

(
1 + Ctσ

2
)
dt

)
︸ ︷︷ ︸

Mixing Time

+
N−1∑
k=0

(∫ tk+1

tk

L̄t β̄(t)dt

)(√
2hβ(T )

σ
+

hβ(T )

2σ2
+

∫ tk+1

tk

2L̄t β̄(t)dt

)
B

+ EβTβ(T ) +MhTβ(T ) (1 + 2B)

with B = (E[∥X0∥2] + σ2d)1/2 and
Eβ = sup

k∈{0,..,N−1}

∥∥∇ log πT−tk

(
X̄ θ
tk

)
− sθ

(
T − tk , X̄

θ
tk

)∥∥
L2
.
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Numerical analysis II
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Figure: Comparison of the empirical W2 distance (mean ± std over 10 runs)

between πdata and π̂
(β,θ)
∞,N (orange) and the related upper bounds (blue) across

parameter a for noise schedule βa, d = 50.

1
Σ(corr) ∈ Rd×d is a full matrix whose diagonal entries are equal to one and the off-diagonal terms are

Σ
(corr)

jj′ = 1/
√

|j − j′| for 1 ≤ j ̸= j′ ≤ d
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Beyond the Gaussian setting
▶ Funnel distribution in dimension d = 50

πdata(x) = N (x1; 0, 1)
∏d

j=2N (xj ; 0, exp(x1))
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✓ The Wasserstein bound seems to hold for more general
distributions.
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