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Generative modeling framework

» D= {u;}"_, € (RY)" a collection of i.i.d. samples from an
unknown distribution mysta.

» Goal: generate new samples from 7q,¢, (i.e. find a proba
Too and a simulable kernel Q such that mgata ™~ T Q).

Complex data distribution myata Easy-to-sample distribution m.,
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SGMs Philosophy - Forward process
» A The other way around is easy (Tgata =~ Q'Too)
AU, = —U.dt + V2dB:, Ug ~ Tata

» By the ergodicity of the O.-U. process, the marginal pr
converges to N'(0,14) as T — .

Complex data distribution mgata Easy-to-sample distribution .,

Backward phase

Forward phase
—
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P “Creating noise from data is easy; creating data from noise is
generative modeling.” (Song et al., 2021)
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Time-reversal and the backward process

» Under mild conditions (1) admits a time-reversed process
(Anderson, 1982), i.e. in law,

(ﬁt>t€[O,T] B (UT_t)tEIO,T] '

» The reverse-time process (Ut) is solution to
t€[0,T]

dU,= | U, +2Vlogpr_. (Ut) dt +v2dB,, Up~ pr,
—_————

score function

with pr the p.d.f. of (1).
» Sampling from the backward SDE vyields a generative model

ﬁT ~ Tdata-
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Learning the score is as easy as denoising...

» A How to train sy : [0, T] x RY = R to learn V log p; (Ut)
when p;(x) is unknown ?

> @ Conditional score matching (Vincent, 2011):
Escore (0) =E |:||50 (7—7 UT) -V |Og Pr (6T|ﬁo> H2i| )

with 7 ~ (0, T) independent of the forward process (Ut)tzo-

» Training target is explicit:

)

Viogr, (U |Uo) = ”’ﬁa‘ﬁ -Z

T Or

with Z ~ N(0, Iy) and Z L U,
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but denoising is not so cheap...

» Tweedie's formula (Gaussian denoising): if U>t = Up +2Z,
then the MMSE estimator of Ug given Ut is

Oo= U, +2Vliogp:(U.).

» In practice, training high-quality score models requires:
> |arge-scale datasets (e.g., ImageNet, Celeb-A, CIFAR-10),
» High-capacity architectures (e.g., U-Nets with attention),
»> Extensive compute: tens or hundreds of thousands of GPU
hours.
» Stable Diffusion v1 :
» training consumed 150,000 A100 GPU-hours,
» estimated cost of ~ $600,000,
» 860 million parameters.
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Results are breathtaking...
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Conditional sampling: the example of inpainting

» In many applications (e.g.,
inpainting), one want to sample
from a conditional distribution.

> Let U= (X,Y)cRY where:

> Y € R% is observed,
> X € R% is missing.

> Let M € {0,1}9 be a binary mask:
M; = 1 if the i-th component is
observed.

DE STATISTIQUE £
2025

Missing

» The goal is to reconstruct the full
signal U = (X, Y) given Y, i.e.,

U=(X,Y).
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Option 1: conditional training

» Score-based models can handle this via specific training
methods (e.g. incorporate masking information M) to get an
approximation of the conditional score function
V log pe(Us | Y, M).

» Requires additional training cost.

» Generalization to arbitrary masks is not guaranteed unless
explicitly trained for them.

» What if one only have access to unconditional score models?
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Option 2: Constrained sampling with unconditional score

» In practice, backward sampling is sequential (Euler-Maruyama)
with A = T/NandO:to<t1<...<tN: T:

N

pg:T(XO:Ta yO:T) = Pxo (XO))/O) H ﬁ@,mt;,l (Xt;7yt;|xt;_1ayt/_1) )
i=1

with

ﬁ@,tk|tk,1 (th7Ytk|th,1a}/tk,1) ::N(thaytk;ﬁk—1a2Ald) )

_ Xe, X,
1 =2A K dsp | T — tgeq, | 2T .
Hi—1 {(ytkl) K < k-t (_ytk1>)}

» But we have noisy samples from the observed parts yp.7 can
we use them to drive the flow towards

Xr1Vr~xY?
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Option 2: Constrained Sampling with unconditional score Il

» Zhang et al. (2025) propose a plug-and-play method: run the
reverse diffusion discretization, but at each step, overwrite the
known pixels using:

inpu VA v,
XpP' - MO Yy +(1-M)o Xy, .

> No retraining is required.

v

But no theoretical guarantees.

» For Gaussian targets sampling is biased...
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Option 2: Constrained Sampling with unconditional score IlI
> (Y

)=o) (s %

)
» Exact solution is Gaussian (red line).

» Theoretical and empirical inputation are biased (blue)

0.259

0.20
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SMC and diffusion

» Conditional on (x¢,_,, ¥t ;). Xt, and y, are independent.

(%
Po:ty, (x0:7 Yo:7)
= Poo (X07)/0) Po. 1.t (ytl\)/o,Xo)
Initial sampling Observation likelihood
N—1

H ﬁ@,tkﬂ\tk (}’tkﬂ‘}’tk,xtk) ﬁ@,tk|tk_1 (th |Ytk,17th,1)
k=1

Observation likelihood Propagation sampling

597T|tN—1 (XT|-ytN—17XfN—1) .

Propagation sampling

4 v It [0 Observed (given)

. -
-
. s -

@ Yt Yt oo Yty
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SMC sampling Algorithm.

» Initialization: For i =1,..., M, sample i(gi) ~ Poo(+) and
sample and store a forward trajectory y7.0 ~ ?(yr:o).

> For each time step k=1,..., N:

» Compute the weights W,EI) X Po,tte (Ve | >"<§k’{1,ytk_1).

» Normalize the weights and resample the particles {x,fk’)_l}
according to {w,Ei)}.
» Propagate each particle i by sampling:
(1)

)?tk ~ ﬁ97tk\tk71(' | )?5;)71’}/%71)'

» Qutput:

W(Ti)é)?(T,-) .

M
i=1
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This has proven to be effective empirically

Original MCGdiff  MCGdiff  MCGdiff  MCGdiff

~ <

Figure: Figure 16 from Cardoso et alo(2024)
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Theoretical convergence result

For some function h bounded measurable,

M
E [h(XT) ’ YO:T] — Z W-(I—’)(s)?si)(

i=1
< |[E1hxT) | Yol E [H(X9) | Yor |
SGM bias
h(X2) | Yo s
SI\/IC error

where )_@ is the parametric approximation of Xt and )_(g’M is its
Monte Carlo approximation using M particles. The first term encom-
passes the three standard SGM errors (Strasman et al., 2025). The
second term comes from the Monte Carlo approximation.
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SMC error

The Monte Carlo error is upper bounded in works from Cardoso et al.

(2024); Wu et al. (2024) by

M

E [h()_(-er) \ Yo:r} - Z; w5
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SGM error bias

H1 There exists C > 0 such that forall h > 0, 0 < k < n-—1,
and all x¢,, yt,.,, v, € R% x R% x R% and all bounded and
measurable functions ¢,

H]E [¢(th+1) | Xe, = Xt Yo = Y Ytk+1 = ytk+l] -

]E |:¢()_<g<+1) ’ ka = tha Ytk = ytka Ytk+1 - }/tk+1] H
< hCllolls -

H2 U e L2(Q).
Then we have that, there exists C;, (5 > 0 such that,

[EthT) | Yorl —E[aED) | Yor|| < (TG IV + GT) 6]
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