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Generative modeling framework

▶ D = {ui}ni=1 ∈ (Rd)n a collection of i.i.d. samples from an
unknown distribution πdata.

▶ Goal: generate new samples from πdata (i.e. find a proba
π∞ and a simulable kernel Q such that πdata ≃ π∞Q).

2 / 18



SGMs Philosophy - Forward process

▶ � The other way around is easy (πdata ≃ Q ′π∞)

d
−→
U t = −

−→
U tdt +

√
2dBt , U0 ∼ πdata . (1)

▶ By the ergodicity of the O.-U. process, the marginal pT
converges to N (0, Id) as T →∞.

▶ “Creating noise from data is easy; creating data from noise is
generative modeling.” (Song et al., 2021)
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Time-reversal and the backward process

▶ Under mild conditions (1) admits a time-reversed process
(Anderson, 1982), i.e. in law,(←−

U t

)
t∈[0,T ]

=
(−→
UT−t

)
t∈[0,T ]

.

▶ The reverse-time process
(←−
U t

)
t∈[0,T ]

is solution to

d
←−
U t =

←−U t + 2∇ log pT−t

(←−
U t

)
︸ ︷︷ ︸

score function

 dt +
√
2dBt ,

←−
U 0 ∼ pT ,

with pT the p.d.f. of (1).

▶ Sampling from the backward SDE yields a generative model

←−
UT ∼ πdata.
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Learning the score is as easy as denoising...

▶ � How to train sθ : [0,T ]× Rd 7→ Rd to learn ∇ log pt
(−→
U t

)
when pt(x) is unknown ?

▶ � Conditional score matching (Vincent, 2011):

Lscore (θ) = E
[
∥sθ

(
τ,
−→
U τ

)
−∇ log pτ

(−→
U τ |
−→
U 0

)
∥2
]
,

with τ ∼ U(0,T ) independent of the forward process (
−→
U t)t≥0.

▶ Training target is explicit:

∇ log πτ (
−→
U τ |
−→
U 0) =

mτ
−→
U 0 −

−→
U τ

σ2
τ

= − Z

στ
,

with Z ∼ N (0, Id) and Z ⊥
−→
U 0.
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but denoising is not so cheap...

▶ Tweedie’s formula (Gaussian denoising): if
−→
U t = U0 +

√
2Z ,

then the MMSE estimator of U0 given
−→
U t is

Û0 =
−→
U t + 2∇ log pt(

−→
U t) .

▶ In practice, training high-quality score models requires:
▶ Large-scale datasets (e.g., ImageNet, Celeb-A, CIFAR-10),
▶ High-capacity architectures (e.g., U-Nets with attention),
▶ Extensive compute: tens or hundreds of thousands of GPU

hours.

▶ Stable Diffusion v1 :
▶ training consumed 150,000 A100 GPU-hours,
▶ estimated cost of ∼ $600,000,
▶ 860 million parameters.
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Results are breathtaking...
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Conditional sampling: the example of inpainting

▶ In many applications (e.g.,
inpainting), one want to sample
from a conditional distribution.

▶ Let U = (X ,Y ) ∈ Rd , where:
▶ Y ∈ Rdy is observed,
▶ X ∈ Rdx is missing.

▶ Let M ∈ {0, 1}d be a binary mask:
Mi = 1 if the i-th component is
observed.

▶ The goal is to reconstruct the full
signal U = (X ,Y ) given Y , i.e.,

Û = (X̂ ,Y ) .
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Option 1: conditional training

▶ Score-based models can handle this via specific training
methods (e.g. incorporate masking information M) to get an
approximation of the conditional score function
∇ log pt(Ut | Y ,M).

▶ Requires additional training cost.

▶ Generalization to arbitrary masks is not guaranteed unless
explicitly trained for them.

▶ What if one only have access to unconditional score models?
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Option 2: Constrained sampling with unconditional score
▶ In practice, backward sampling is sequential (Euler-Maruyama)

with ∆ = T/N and 0 = t0 < t1 < . . . < tN = T :

pθ0:T (x0:T , y0:T ) = p∞ (x0, y0)
N∏
i=1

p̄θ,ti |ti−1

(
xti , yti

∣∣xti−1 , yti−1

)
,

with

p̄θ,tk |tk−1

(
xtk , ytk

∣∣xtk−1
, ytk−1

)
:= N (xtk , ytk ; µ̄k−1, 2∆Id) ,

µ̄k−1 = 2∆

{(
x̄tk−1

ȳtk−1

)
+ sθ

(
T − tk−1,

(
x̄tk−1

ȳtk−1

))}
.

▶ But we have noisy samples from the observed parts y0:T can
we use them to drive the flow towards

←−
X T |
←−
Y T ∼ X |Y ?
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Option 2: Constrained Sampling with unconditional score II

▶ Zhang et al. (2025) propose a plug-and-play method: run the
reverse diffusion discretization, but at each step, overwrite the
known pixels using:

X input
tk ← M ⊙

−→
Y tk + (1−M)⊙ X̄tk .

▶ No retraining is required.

▶ But no theoretical guarantees.

▶ For Gaussian targets sampling is biased...
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Option 2: Constrained Sampling with unconditional score III

▶
(
Y
X

)
∼ N

((
0
0

)
,

(
1 1.5
1.5 5

))
.

▶ Exact solution is Gaussian (red line).

▶ Theoretical and empirical inputation are biased (blue).
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SMC and diffusion

▶ Conditional on (xtk−1
, ytk−1

), xtk and ytk are independent.

pθ0:tN (x0:T , y0:T )

= p∞ (x0, y0)︸ ︷︷ ︸
Initial sampling

p̄θ,t1|t0 (yt1 |y0, x0)︸ ︷︷ ︸
Observation likelihood

N−1∏
k=1

p̄θ,tk+1|tk
(
ytk+1

∣∣ytk , xtk )︸ ︷︷ ︸
Observation likelihood

p̄θ,tk |tk−1

(
xtk

∣∣ytk−1
, xtk−1

)︸ ︷︷ ︸
Propagation sampling

p̄θ,T |tN−1

(
xT

∣∣ytN−1
, xtN−1

)︸ ︷︷ ︸
Propagation sampling

.

xt0 xt1 xt2 · · · xtN

yt0 yt1 yt2 · · · ytN

Latent

Observed (given)
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SMC sampling Algorithm.

▶ Initialization: For i = 1, . . . ,M, sample x̃
(i)
0 ∼ p∞(·) and

sample and store a forward trajectory yT :0 ∼ −→p (yT :0).
▶ For each time step k = 1, . . . ,N:

▶ Compute the weights w
(i)
k ∝ p̄θ,tk |tk−1

(ytk | x̃
(i)
tk−1

, ytk−1
).

▶ Normalize the weights and resample the particles {x̃ (i)tk−1
}

according to {w (i)
k }.

▶ Propagate each particle i by sampling:

x̃
(i)
tk ∼ p̄θ,tk |tk−1

(· | x̃ (i)tk−1
, ytk−1

).

▶ Output:

M∑
i=1

w
(i)
T δ

x̃
(i)
T

.
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This has proven to be effective empirically

Figure: Figure 16 from Cardoso et al. (2024)
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Theoretical convergence result

For some function h bounded measurable,∥∥∥∥∥E [h(XT ) | Y0:T ]−
M∑
i=1

w
(i)
T δ

x̃
(i)
T

∥∥∥∥∥
≤

∥∥∥E [h(XT ) | Y0:T ]− E
[
h(X̄ θ

T ) | Y0:T

]∥∥∥︸ ︷︷ ︸
SGM bias

+

∥∥∥∥∥E [
h(X̄ θ

T ) | Y0:T

]
−

M∑
i=1

w
(i)
T δ

x̃
(i)
T

∥∥∥∥∥︸ ︷︷ ︸
SMC error

where X̄ θ
T is the parametric approximation of XT and X̄ θ,M

T is its
Monte Carlo approximation using M particles. The first term encom-
passes the three standard SGM errors (Strasman et al., 2025). The
second term comes from the Monte Carlo approximation.
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SMC error

The Monte Carlo error is upper bounded in works from Cardoso et al.
(2024); Wu et al. (2024) by∥∥∥∥∥E [

h(X̄ θ
T ) | Y0:T

]
−

M∑
i=1

w
(i)
T δ

x̃
(i)
T

∥∥∥∥∥ ≤ CT√
M

.

17 / 18



SGM error bias

H1 There exists C > 0 such that for all h > 0, 0 ≤ k ≤ n − 1,
and all xtk , ytk+1

, ytk ∈ Rdx × Rdy × Rdy and all bounded and
measurable functions ϕ,∥∥∥E [

ϕ(Xtk+1
) | Xtk = xtk ,Ytk = ytk ,Ytk+1

= ytk+1

]
−

E
[
ϕ(X̄ θ

tk+1
) | Xtk = xtk ,Ytk = ytk ,Ytk+1

= ytk+1

] ∥∥∥
≤ hC ∥ϕ∥∞ .

H2 U ∈ L2(Ω) .

Then we have that, there exists C1,C2 > 0 such that,∥∥∥E [h(XT ) | Y0:T ]− E
[
h(X̄ θ

T ) | Y0:T

]∥∥∥ ≤ (
e−TC1 ∥U∥L2 + C2T

)
∥ϕ∥∞
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